Intercalibration of the Solar Proton Channels from the GOES 8-15 Energetic Particle Sensors

Juan Rodriguez1,2, Justin Krosschell3,4, and Janet Green1,5

1. NOAA National Geophysical Data Center
2. University of Colorado CIRES
3. Dordt College (NOAA Hollings Scholar)
4. Now at University of Wisconsin
5. Now at Space Hazards Applications
GOES 8-15 Energetic Particle Sensors (EPS): Basis for SWPC Solar Radiation Storm Alerts

Integral fluxes derived from EPS data are used by SWPC to characterize Solar Radiation Storms in real time.

<table>
<thead>
<tr>
<th>Solar Radiation Storms</th>
<th>Flux level of ≥ 10 MeV particles (ions)</th>
<th>Number of events when flux level was met**</th>
</tr>
</thead>
<tbody>
<tr>
<td>S5 Extreme</td>
<td>10⁷</td>
<td>Fewer than 1 per cycle</td>
</tr>
<tr>
<td>S4 Severe</td>
<td>10⁴</td>
<td>3 per cycle</td>
</tr>
<tr>
<td>S3 Strong</td>
<td>10³</td>
<td>10 per cycle</td>
</tr>
<tr>
<td>S2 Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1 Minor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Biological: unavoidable high radiation hazard to astronauts on EVA (extra-vehicular activity), passengers and crew in high-flying aircraft at high latitudes may be exposed to radiation risk.***

Satellite operations: may experience memory device problems and noise on imaging systems; star-tracker problems may cause orientation problems, and solar panel efficiency can be degraded.

Other systems: blackout of HF radio communications through the polar regions and increased navigation errors over several days are likely.

Flux levels are 5 minute averages. Flux in particles cm⁻² ster⁻¹ cm². Based on this measure, but other physical measures may be used.

These events can last more than one day.*

***High energy particle (>100 MeV) are a better indicator of radiation risk to passenger and crews. Pregnant women a
GOES 8-15 Energetic Particle Sensors (EPS): Measurement Equation

\[R = \int\int j(E, \Omega) A(E, \Omega) \, d\Omega \, dE \]

- Effective area measured at multiple energies and angles and compared with analytical models (1970’s-1980’s)
- Instrument design has not changed since GOES-8
- Similar energy and angular responses
- Similar (small) non-linearities
- Similar response to penetrating radiation
- **CHALLENGE:** identifying when two EPS instruments are observing same fluxes
 - Two look directions: facing east and west in the orbital plane
 - Geomagnetic cutoffs are higher east-facing than west-facing

GOES is not an interplanetary mission!
Solar proton fluxes observed eastward are lower than those observed westward at GEO.
East-west differences are consequences of a large proton gyroradius and a *radial* flux gradient.

In a 100 nT magnetic field, 1-100 MeV protons have 0.2-2 R_e gyroradii at 90 deg pitch angle.
Increased solar wind dynamic pressure enhances SEP access to GEO, modifies radial gradient

Shock arrives; solar wind pressure increases

Spinning (GOES-11) and eastward (GOES-10) observations attenuated

Cutoffs strongly suppressed when $P_{\text{dyn}} > 10 \text{ nPa}$: intercalibrate!
Instruments facing east and west observe similar fluxes for \(P_{\text{dyn}} \geq 10 \ nPa \)

- Scatter plots of east-west ratios of GOES EPS channel P2 (4.2–8.7 MeV) as a function of USGS \(Dst \) from April 1998 to December 2006
 - P2 is the lowest energy GOES SEP channel that does not also observe trapped radiation belt protons
 - Most affected by geomagnetic fields (cutoffs)
- All GOES channels <40 MeV are sensitive to cutoffs and benefit from this intercalibration criterion
Multiple events are aggregated in order to improve the intercalibrations

- Intercalibration rarely satisfactory with individual events
 - All energies, dynamic range not covered with P_{dyn} restricted to large values
- Example: GOES-8 to GOES-10 comparisons
 - Number of points in each event ≥ 50
 - Linear correlation coefficient $r \geq 0.95$ in each event
 - No significant trend over shared mission lifetimes

Conclusion: need to aggregate observations over shared mission lifetimes of two satellites in order to achieve a good intercalibration
GOES-8 (westward) and GOES-10 (eastward) intercalibrated for Pdyn > 10 nPa

GOES-8 overlapped with GOES-9, -10, -11 and -12 EPS, provides best benchmark since looked westward
GOES 8-15 and 13-15 series intercalibrated using December 2006 SEP events

Example: GOES-13B vs. GOES-10
GOES-13B (westward) and GOES-15B (eastward and westward) intercalibrated 2012-2013

5 nPa criterion used when G13B and G15B both looked westward
GOES intercalibration differences have a <10% effect on derived proton integral fluxes

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>>1</th>
<th>>5</th>
<th>>10</th>
<th>>30</th>
<th>>50</th>
<th>>60</th>
<th>>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS error, fractional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14–15 July 2000</td>
<td>0.037</td>
<td>0.057</td>
<td>0.093</td>
<td>0.016</td>
<td>0.071</td>
<td>0.043</td>
<td>0.013</td>
</tr>
<tr>
<td>28–30 October 2003</td>
<td>0.025</td>
<td>0.038</td>
<td>0.092</td>
<td>0.018</td>
<td>0.070</td>
<td>0.041</td>
<td>0.012</td>
</tr>
</tbody>
</table>

The examples used are the Bastille Day 2000 and Halloween 2003 SEP events.
Summary

• Conditions for accurate intercalibration of solar proton flux observations in geostationary orbit:
 • $P_{dyn} > 10 \text{ nPa}$ when intercalibrating east-east, east-west, west-north, etc.
 • $P_{dyn} > 5 \text{ nPa}$ when intercalibrating west-west
• Apart from lowest energy channel (P1), which includes trapped ring current fluxes, these conditions result in $r^2 \geq 0.95$ for all comparisons (except G9 vs. G10 P7: $r^2 = 0.85$)
• Agreement is good (within 20%) among the GOES 8-15 EPS
 • Consistency: GOES 8-12 and 13-15 series built years apart
• For details of the analysis, please see Rodriguez et al. (2014), *Space Weather, 12*, 92-109

This research was supported by NSF National Space Weather Program award AGS-1024701 to the University of Colorado and by the NOAA Hollings Scholarship Program.