
We follow the procedure proposed by Ahmed et al. 2010.

• Input: LOS magnetogram.

• Low absolute value pixels are eliminated (set to 0).

• Ising Energy, EIsing is calculated via the formula:

where, S = +1 (-1) for a positive (negative) pixel and d the distance between pairs of opposite polarity

pixels.

• We also explored, EIsing,part which is calculated for a partitioned magnetogram, for the pairs of

opposite polarity partitions.

Exploring the solar-flare predictive potential of 

non-neutralized currents and Ising energy in solar active regions

• the total unsigned non-neutralized current

• the maximum non-neutralized partition current
• The Ising energy of the original magnetogram, EIsing

• The Ising energy of the partitioned magnetogram, EIsing,part
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Ising Energy calculations

We follow the method of Georgoulis, Titov & Mikić (2012):

• Input: Vector magnetogram

• The vertical component of the magnetic field is used to produce partitions (Barnes et al. 2005), based

on appropriate magnetic flux density, area and enclosed flux thresholds (100 G, 40 pixel, 5∙1019 Mx).

• Ampère’s law is used to calculate the total vertical current within each partition:

• The vector of the magnetic field at the photosphere is calculated via a potential field extrapolation

(Alissandrakis 1981).

• Ampère’s law is used to calculate the corresponding current for the potential field Ipot.

• A partition is non-neutralized only if I > 5Ipot and Ι > 3 δΙ.

Results

To test the predictive capability of the four parameters, against that of the total unsigned magnetic

flux (provided with the SHARP data) we use Bayesian inference:

where, N and F are the numbers of total flaring AR with a property value higher than a threshold.

Fig.1 A SHARP CEA NRT Br

magnetogram with overplotted partitions

Fig.2. INN,tot (black) and INN,max (blue) evolution for 11 AR. Blue,

green, yellow and red lines mark the occurrence times of B-, C-,

M- and X-class flares correspondingly.

Fig.3. Same as Fig.2, for EIsing, (blue) and EIsing,part (black).

Conclusions
• AR with high flare productivity exhibit, on average, higher INN,tot, INN,max, EIsing, EIsing,part, by

more than an order of magnitude while clear peaks in INN,tot and EIsing,part are associated either

with X-class flares or repeated flaring activity (Fig. 2,3,4).

• INN,tot and INN,max also show potential to distinguish between flare-quiet and flare-productive

phases of AR evolution (as e.g. AR 11158, 11429, 11882 in Fig. 2).

• The occurrence of strongest flares increases as the values of the four parameters increase

while X-class flares are associated only with the highest values (Fig. 5, 6).

• All four parameters show a better predictive potential than the total unsigned magnetic flux

(Fig. 7).

• The total unsigned non-neutralized current INN,tot performs significantly better than the rest of

the parameters (Fig. 7, top row).

• Using the partitioned magnetogram to calculate Ising energy (EIsing,part) clearly improves the

performance of the parameter (Fig. 7, bottom row).

• Both EIsing,part and INN,tot show high importance when used in neural networks models for

forecasting C-, M- and X-class flares, with the Garson (Garson 1991) and Olden (Olden et al.

2004) methods, along-side well studied flaring predictors.

Fig.4. Left: INN,tot (black)

and INN,max (blue) time-

averaged values and the

total flare index over the

duration of each AR time-

series. Right: the same for

Eising (black) and EIsing,part

(blue).

Fig.5. INN,tot (left) and INN,max (right)

versus the total unsigned magnetic flux

for the representative sample of SHARP

CEA NRT data. Blue, yellow and red

crosses correspond respectively to data

associated with C-, M- and X-class flares

within a 24 h time window.

Fig.6. Same as Fig.5 for EIsing,part (left)

and EIsing, (right).

Fig.7. Top row: Bayesian inferred probabilities for flares stronger than C1.0 (left), M1.0 (middle) and X1.0 (right) for various thresholds

of INN,tot (red solid line) and INN,max (red dotted line). The black solid line corresponds to the total unsigned magnetic flux. Bottom: Same

as top for EIsing,part (solid red line) and EIsing (dotted red line).

Abstract

The immediate effect of solar flares on the geospace environment imposes strict conditions on the efficiency of prediction and requires

the development of new methods with increasing sophistication and accuracy. In this context, we investigate the predictive potential of

certain solar active-region properties reported in the literature as flare-associated but never widely used in an operational framework.

We use Space weather Helioseismic Magnetic Imager Active Region Patch (SHARP) data to calculate the non-neutralized currents and

Ising energy of a sizable sample of active regions. These quantities were chosen because a) electric currents supply the free magnetic

energy necessary for flaring activity, b) the magnetic complexity, as modeled by the Ising energy, is an indication of potentially intense

flaring activity, and c) promising results have been reported in the literature about their potential as flare predictors but no study has

been performed on more extended samples. We describe the extraction process of these properties from SHARP data. Preliminary

results show that both non-neutralized currents and Ising energy facilitate some distinction between flaring and non-flaring active

regions and that there is a tendency for larger flares to occur for larger values of these properties. We finally discuss their efficiency and

integrability of these predictors in the operational framework of the FLARECAST project of the European Commission.

Method
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Two kinds of SHARP Cylindrical Equal Area (CEA) projected, Near Real Time (NRT) data 

(Bobra et al. 2014) are used

• A sample of 11 AR time-series (Table I).

• A representative sample of 9454 SHARP CEA NRT cut-outs, for 336 randomly selected days

between September 2012 and May 2016, with a 6 h cadence.

The associated flaring activity within a 24 h time window is inferred by the Geostationary

Operational Environmental Satellite (GOES) flare catalogue (http://www.swpc.noaa.gov).

Table I. The AR sample

Four parameters are tested for their predictive potential:
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