

Solar EUV Irradiance Working Group Inter-Calibration and Degradation of EUV Instruments ROB, Brussels, Belgium, 15-18 Apr 2013

LYRA: the Large-Yield RAdiometer

- 3 instrument units (redundancy)
- 4 spectral channels per head
- 3 types of detectors,
 Silicon + 2 types of
 diamond detectors (MSM, PIN):
 - radiation resistant
 - insensitive to visible light compared to Si detectors
- High cadence up to 100 Hz

SWAP and LYRA spectral intervals for solar flares, space weather, and aeronomy

LYRA channel 1: the H I 121.6 nm Lyman-alpha line (120-123 nm) LYRA channel 2: the 200-220 nm Herzberg continuum range (now 190-222 nm) LYRA channel 3: the 17-80 nm Aluminium filter range incl the He II 30.4 nm line (+ <5nm X-ray) LYRA channel 4: the 6-20 nm Zirconium filter range with highest solar variablility (+ <2nm X-ray) SWAP: the range around 17.4 nm including coronal lines like Fe IX and Fe X

LYRA pre-flight spectral responsivity (filter + detector, twelve combinations)

Calibration-Problem: 2010 according to LYRA

Speculation on spectral degradation

(Edge could actually be steeper between 17nm and 20nm)

First Light acquisition (06 Jan 2010)

... no degradation so far ...

Start with "First Light"...

... fit the degradation ...

... and add it

Plausibility:

Artifacts in
channels 1 and 2
Non-degraded
SXR in
channels 3 and 4

Disadvantages:

Underestimate EUV
in channels 3 (and 4)
Distortion of
occultations

Formal:

i = is + id

i=measured photocurrent
is=solar photocurrent
id=dark current

is = A/T $\int \int E(\lambda, t) F(\lambda) D(\lambda) d\lambda dt$ t λ

 λ =wavelength A=detector surface T=total exposure time E(λ , t)=solar spectral irradiance F(λ)=filter transmittance D(λ)=detector spectral responsivity

LYRA Radiometric Model, ch1-1 simulated

Observed vs. LRM-simulated values (head 1)

	<u>ch1-1</u>	<u>ch1-2</u>	<u>ch1-3</u>	<u>ch1-4</u>
sim	0.2929 nA	11.28 nA	0.06399 nA	0.1064 nA
obs	~1300.0counts/m	s 620.0counts/ms	24.0counts/ms	37.5counts/ms
dc	-9.0counts/m	s -6.6counts/ms	-6.8counts/ms	-7.2counts/ms
VFC,	resis. =>	=>	=>	=>
	0.5311 nA	12.78 nA	0.07116 nA	0.1216 nA
	+81.3%	+13.3%	+11.2%	+14.3%

LYRA Radiometric Model, ch2-4 simulated

Observed vs. LRM-simulated values (head 2)

	<u>ch2-1</u>	<u>ch2-2</u>	<u>ch2-3</u>	<u>ch2-4</u>		
sim	0.1030 nA	12.07 nA	0.05765 nA	0.01542 nA		
obs	500.0counts/ms	710.0counts/ms	s 23.0counts/ms	45.0counts/ms		
dc	-8.0counts/ms	-6.5counts/ms	s -6.4counts/ms	-7.5counts/ms		
	492.0counts/ms	703.5counts/ms	s 16.6counts/ms	37.5counts/ms		
multiplied by VFC-parameter in V/(counts/ms),						
divided by resistance in Giga-Ohm =>						
	*0.00415086	*0.00414635	*0.00414969	*0.00415007		
	/10.37	/0.1969	/1.016	/10.30		
obs	0.1969 nA	14.81 nA	0.06780 nA	0.01511 nA		
	+91.2%	+22.8%	+17.6%	-2.0%		

LYRA Radiometric Model, ch3-3 simulated

Observed vs. LRM-simulated values (head 3)

	<u>ch3-1</u>	<u>ch3-2</u>		<u>ch3-3</u>		<u>ch3-4</u>	
sim	0.3686 nž	A 9.693	nA	1.0250	nA	0.1082	nA
obs	930.0counts	s/ms 552.0co	unts/ms 2	280.0count	ts/ms	36.2count	s/ms
dc	-10.0counts	s/ms -6.5com	unts/ms	-6.4count	ts/ms	-6.2count	s/ms
VFC,	resis. =>	>	=>		=>		=>
	0.3807 nž	A 11.44	nA	1.1400	nA	0.1249	nA
	+3.39	% +18	.08	+11.	28	+15.	48

Formal:

Ecal = <u>iuncal - id + corr</u> Ecal(FL) iuncal(FL)-id(FL)

Ecal(FL) = $\underline{iuncal(FL)} - \underline{id(FL)} \int Es(FL) d\lambda$ is(FL)

Es(FL) = solar spectral irradiance from TIMED&SOLSTICE is(FL) = simulated photocurrent in nA (proportional to count rate)

Resulting conversion to physical units

	±Q1 39	±13 30	±11 29	⊥1 <i>1</i> 39 (1)
	TOI.JO	TIJ.J0	+11.20	+14.5 (1)
	+91.2%	+22.8%	+17.6%	-2.0% (2)
	+3.3%	+18.0%	+11.2%	+15.4% (3)
	=> ? (0.0%)	=> +18.0%	=> +13.3%	=> +9.2%
	ch*-1	ch*-2	ch*-3	ch*-4
	(120-123nm)	(190-222nm)	(17-80&0-5nm)	(6-20&0-2nm)
	0.006320 W/m^2	0.5914 W/m²	0.002008 W/m²	0.0007187 W/m²
	? (0.0%)	+18.0%	+13.3%	+9.2%
	=>			
	0.006320 W/m^2	0.6979 W/m²	0.002275 W/m ²	0.0007848 W/m ²
which corresponds to				
	492.0counts/ms	703.5counts/m	ns 16.6counts/ms	37.5counts/ms

(Example: Head 2, dark currents subtracted)

Degradation added. Simple linear conversion.

Solar EUV irradiance according to LYRA

LYRA channel 2-3 (17-80nm degraded(?) plus <5nm) LYRA channel 2-4 (6-20nm plus <2nm) Jan 2010 – Apr 2013, versus GOES (scaled)

Possible error sources

- First-Light-Day calibration (selection of "significant" values, difference among LYRA units, measured/modeled channel response, difference among TIMED and SORCE, short wavelengths modeled, hardly info below 1nm)
- Degradation estimation
- Simple addition (spectral degradation in channels 3 and 4)
- Dark current estimation
- Simple linear conversion (different response in SXR and EUV)

Next steps

- Is the long-term development consistent ?
- Cross-calibration with LYRA units 1 and 3
- Cross-calibration with TIMED and SORCE
- Cross-calibration with SDO/EVE (others?)
- What do the flares consist of (spectral, thermal) ?