Comparison of solar EUV irradiance observed by LYRA and EVE

Matthieu Kretzschmar

LPC2E, CNRS & University of Orléans, France

M. Kretzschmar

Comparison PROBA2/LYRA & SDO/EVE

PROBA2: a technology demonstrator

Both the S/C and its payload have true innovations: With LYRA, diamond detectors in space for the first time !

	Channel 1	Channel2	Channel3	Channel4	
	Ly	Hz	AI	Zr	
Unit1	MSM	PIN	MSM	Si	Long term calibration
Unit2	MSM	PIN	MSM	MSM	Nominal
Unit3	Si	PIN	Si	Si	Special Campaig

Launched on Nov. 2 2009, LYRA first light on January 6 2010

Degradation

- ✓ Huge degradation in the two first channels of the nominal unit.
- ✓ For the two other channels, back up units are used to monitor the degradation.
- \checkmark which is corrected by addition.

Spectral response

✓ We use TIMED/SEE and SDO/EVE data to simulate LYRA ch2-3 and ch2-4 and compare with our results

M. Kretzschmar

Comparison PROBA2/LYRA & SDO/EVE

Instrumental effects

Lyra Ch2-4 (Zr) Both LYRA and PROBA2 7.5×10⁻⁴ have innovative features that reflect themselves in 7.0×10⁻⁴ Irradiance the data. \checkmark Diamond detectors + (a) 6.5×10⁻⁴ LARs 6.0×10^{-4} \checkmark Slow response time 12:00 12:00 00:00 00:00 12:00 12 May 13 May Reboots 9.2×10⁻⁴ Eclipse and occultations 9.0×10⁻ 8.8×10 \checkmark Needed to compute daily rradi 8.6×10⁻ average value. 8.4×10⁻⁴ 8.2×10 EUVWG BrusselsyApril 2013 00:00

Ch2-3: long term

- \checkmark Agrees with manual selection of daily value.
- \checkmark Absolute value is ok.
- \checkmark Much larger variations with solar activity for SDO/ EVE.

spectral ranges.

✓ Using a multiplicative correction for degradation would artificially increase the LYRA flare flux.

✓ Can we retrieve the EUV component of ch2-3 with LYRA only ?

Modeling of the degradation of the EUV component of ch2-3

ch23^{deg} - ch24 = degraded EUV component of ch3

Comparison PROBA2/LYRA & SDO/EVE

Modeling of the degradation of the EUV component of ch2-3

→ (ch23^{deg} - ch24) / (2.8 10³ + 0.726 ch24) (and normalisation) = degradation curve for the EUV (DC)

M. Kretzschmar

Comparison PROBA2/LYRA & SDO/EVE

Modeling of the EUV component of ch2-3

✓ This can be recover (as far as the SNR is sufficient..) by using a multiplicative correction for degradation M. Kretzschmar
EUVWG Brussels, April 2013

Ch2-4: long term

- ✓ Agrees with manual selection of daily value.
- \checkmark Absolute value is good.
- ✓ slightly stronger trend with solar cycle for SDO/EVE
- ✓ but both degradation correction are version
 2 only
- ✓ Up to now, increase by a factor of 2.

Kretzschmar et al., 2012

Comparison PROBA2/LYRA & SDO/EVE

Conclusion

- Lyra ch2-3 has lost of its EUV signal above 17nm. It is just the SXR contribution scaled to the EUV level, does it make sens ?
- Lyra ch2-4 observes a lower increase with solar activity (-0.04% / day) wrt EVE + TIMED see.
- Other uncorrected effects appear in LYRA ch2-4, during eclipse season and annual: temperature effects ?

Now preliminary comparison of flare observations

Matthieu Kretzschmar

(I) LPC2E, CNRS & University of Orléans, France

M. Kretzschmar

Comparison PROBA2/LYRA & SDO/EVE

Why looking at flares and degradation ?

Looking at flares might help to monitor the SXR and EUV contribution in time.

Channel 3 vs GOES x 100 03/02/2013 100.00 200 -3.30 Ratio vs time CH3 vs GOES 19/08/2012 -3.63 10.00 150 ⁻lare Ratio Ch3/Goes 03/03/2012 -3.97 17/09/2011 1.00 100 -4.30 02/04/2011 -4.63 50 0.10 16/10/2010 -4.97 -5.30 01/05/2010 0.01 03/01/202007/207002/206/08/203/03/209/207/204/2013 1.000 10.000 0.001 0.010 0.100 Date Goes energy

- Good correlation. Does not look dependent on time..
- Absolute value for LYRA might be OK IF background is substracted correctly.
- Ratio rather constant but larger SXR flare have relative smaller signal in LYRA. To be confirmed..

Channel 4 vs GOES

- Inconclusive for now, need more work and (good thoughts)