Preliminary GOES Calibrations

Janet Machol NOAA National Geophysical Data Center University of Colorado CIRES

Rodney Viereck NOAA Space Weather Prediction Center

Inter-Calibration and Degradation Workshop Belgium Solar-Terrestrial Center of Excellence 15 – 18 April 2013

GOES EUVS Sensors

GOES: Geostationary Operational Environmental Satellite

current GOES	XRS	2 x-ray bands: A 0.05-0.4 nm, B 0.1-0.8 nm, since 1972
NOP→13-15	SXI	x-ray imager, 3 channels: 0.6-6 nm
	(EUVS)	5 EUV bands, 5-127 nm

GOES-13	2006
GOES-14	2009
GOES-15	2010

Requirements:	30-s samp	le rate, 30-s latency,	20% uncertainty
Actual:	10 s	3 s	15%

GOES EUVS

GOES EUVS (Panametrics \rightarrow ATC)

- transmission grating spectrographs
 - shared gratings for A&B, C&D
 - detector: silicon photodiodes (IRD)
 - thin film filters on detector for A-D
 - no moving parts
- Calibrations at the NRL Beam Line at Brookhaven (John Seeley)

Earlier GOES EUVS Calibrations

GOES-13: Solar Phys (2010), Evans, Strickland, Woo, McMullin, Plunkett, Viereck, Hill, Woods, and Eparvier

Looked at post-launch test period in 2006 (X9 flare).

Compared with TIMED SEE and SOHO SEM.

All five channels within specified uncertainties

GOES EUVS Calibrations

How good are the GOES bands?

Focus on channels A, B, and E

Long term comparisons

- daily averages
- EVE V3 L3, SOHO SEM
- corrected to 1 AU

Flare (9 August 2011)

• 1-min data

GOES EUVS Calibrations

The irradiance measured in a channel is

 $J[W/m^2] =$

((Counts - Offset [counts]) * Gain [A/count] –VisibleLightContamination [A]) / ConversionFactor [A/(W/m²)]

Offset, Gain, and VisibleLightContamination are determined before launch.

ConversionFactor is a function of wavelength and bandpass and requires an assumed spectrum and response function. (Current conversion assumes boxcar response.)

We assume the quiet Sun NRL spectrum and calculate

 $J_{tot} [W/m^2] = \sum J_i$ $J_{subset} [W/m^2] = \sum J_i$ $I_{tot} [A] = \sum R_i \cdot J_i$ total irradiance of detector band for NRL model total irradiance of subset of band for NRL model total current of band= detector response x irradiance

 $J_{meas} = (J_{tot} / I_{tot}) \cdot I_{meas}$ $J_{meas_subset} = (J_{subset} / J_{tot}) \cdot J_{meas}$

measured irradiance in full channel measured irradiance in subset of channel

GOES EUV-A Bandpass

GOES EUV-A Irradiances

GOES EUV-A Correlations

GOES EUV-B

SDO EVE "GOES-B" (25-34 nm), SOHO SEM (26-34 nm)

GOES EUV-B

GOES EUV-E (Lyman α, 121 nm)

GOES EUV-E (Lyman α, 121 nm)

GOES EUV-E

Next Generation...GOES-R EXIS

GOES-R EXIS...Instruments

Si detectors and Be filters

better SNR and dynamic range

reflection grating spectrographs

 better degradation tracking with redundant filters and bootstrap technique

EUV from GOES-R EXIS

High res. spectra of lines, bands representative of different solar regions. Reconstruct full EUV spectra from sparse measurements....

Assumes spectral features that have the same source regions in the solar atmosphere vary similarly.

Summary

GOES-15 Comparisons

- daily data, 2010- 2012
- Ch A ±3% relative to EVE in 2012
- Ch B ~3% lower than EVE trend same as SOHO
- Ch E 7% degradation / year

Future

- Characterize XRS channels
- Use XRS to parameterize flare signals between quiet sun and flare spectra
- Calibrate and characterize C,D channels
- Look at GOES-13, GOES-14 (-14 duplicates A, B for angular effects on FOV)
- Put out GOES EUVS data on web.

