Experiences concerning the composition of a spacecraft generated atmosphere from Rosetta/ROSINA

Peter Bochsler, Kathrin Altwegg, and Martin Rubin Physikalisches Institut University of Bern/Switzerland bochsler@space.unibe.ch Experiences concerning the composition of a spacecraft generated atmosphere from Rosetta/ROSINA

- 1. How?
- 2. What?
- **3.Measures to reduce contamination hazards**

Focus on outgassing of condensable and non-volatile compounds from spacecraft ROSINA provides an excellent diagnostics to identify and study such compounds JOURNAL OF SPACECRAFT AND ROCKETS Vol. 45, No. 1, January–February 2008

Thruster Plumes: Sources for High Pressure and Contamination at the Payload Location

S. Graf,* K. Altwegg,[†] H. Balsiger,[‡] and P. Bochsler[‡] University of Bern, 3012 Bern, Switzerland B. Fiethe[§] Technische Universität, 38106 Braunschweig, Germany and

E. Montagnon[¶] ESA, 64293 Darmstadt, Germany

DOI: 10.2514/1.30600

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, A12313, doi:10.1029/2010JA015734, 2010

Influence of spacecraft outgassing on the exploration of tenuous atmospheres with in situ mass spectrometry

B. Schläppi,¹ K. Altwegg,¹ H. Balsiger,¹ M. Hässig,¹ A. Jäckel,¹ P. Wurz,¹ B. Fiethe,² M. Rubin,³ S. A. Fuselier,⁴ J. J. Berthelier,⁵ J. De Keyser,⁶ H. Rème,^{7,8} and U. Mall⁹

ROSINA package on the **Rosetta Cometary Explorer**

DFMS

COPS

Schläppi et al. (2010)

SCHLAEPPI_FIGURE2a.GRF_PB_June 3, 2014

Diffusion: From interior of spacecraft, Timescale: 10 months

Decomposition: From UV-irradiation of plastics Timescale: Duration of mission

Thruster Firings Hydrazine properties:

 $3N_2H_4 \rightarrow 4NH_3 + N_2$

H H

 $N_2H_4 \rightarrow N_2 + 2 H_2$

Rosetta: Monomethylhydrazine + Oxidizers CH₆N₂

Boiling point (at 1 atm) 91 °C

Heat of vaporization 40.4 kJ/mole (Water 40.7 kJ/mole)

SCHLÄPPI ET AL.: SPACECRAFT OUTGASSING

Figure 13. Pressure during and after thruster firing. Multiple thrusters have been activated in this case, which yields pressure peaks of almost three orders of magnitude above the background level. The pressure decreases at the end of the firing within minutes to the 10^{-11} mbar range but stays above the background level (dashed line) for more than 1 h.

SCHLÄPPI ET AL.: SPACECRAFT OUTGASSING

Figure 13. Pressure during and after thruster firing. Multiple thrusters have been activated in this case, which yields pressure peaks of almost three orders of magnitude above the background level. The pressure decreases at the end of the firing within minutes to the 10^{-11} mbar range but stays above the background level (dashed line) for more than 1 h.

Diffusion of hard spheres in a cloud:

$$\mathbf{D} \cong \lambda \cdot \langle \mathbf{v} \rangle = \frac{\langle \mathbf{v} \rangle}{\mathbf{n}\sigma}$$

- D: Diffusion "coefficient", depends on density !
- λ: Mean free path
- <v> : Average thermal speed
- n: Particle density
- σ: Collision cross section of hard spheres

Spherical cloud:

$$\frac{\partial \mathbf{n}(\mathbf{r},\mathbf{t})}{\partial \mathbf{t}} = \frac{\mathbf{D}_{o}}{\mathbf{r}^{2}} \frac{\partial}{\partial \mathbf{r}} \mathbf{r}^{2} \frac{\partial \mathbf{n}(\mathbf{r},\mathbf{t})}{\mathbf{n}(\mathbf{r},\mathbf{t})\partial \mathbf{r}}$$

Spherical cloud, expanding and moving away

Modeling Thruster Firings

What?

SCHLÄPPI ET AL.: SPACECRAFT OUTGASSING

List of (toxic) chemicals detected by ROSINA

Hydrocarbons		PAH	C-0		C-N	N-O	N-H	Fluorine	
CH	C_4	C_5H_{10}	C_6H	CO	$C_2H_2O_2$	CN	NO	N	F
CH_2	C_4H	C_5H_{11}	C_6H_2	CO_2	$C_2H_3O_2$	CHN	CNO	NH	HF
CH_3	C_4H_2	C_5H_{12}	C_6H_3	HCO	$C_2H_4O_2$	CH_2N	HCNO	NH_2	CF
CH_4	C_4H_3		C_6H_4	CH_2O		CH_3N	H_6CNO	NH_3	
	C_4H_4		C_6H_5	CH_3O	C_4H_4O	CH_3NH	NO_2	N_2	Sulfur
C_2	C_4H_5		C_6H_6	CH_4O	C_4H_5O	CH_3NH_2	HNO_2		S
C_2H	C_4H_6			CH_5O	C_4H_6O	CH_3N_2H	H_4NO_2	Oxygen	N_2S
C_2H_2	C_4H_7		C_7H_3		C_4H_7O	$CH_3N_2H_2$	H_2N_2O	0	SO_2
C_2H_3	C_4H_8		C_7H_4	C_2O	C_4H_8O	$CH_3N_2H_3$		ОН	
C_2H_4	C_4H_9		C_7H_5	C_2HO			$CHNO_2$	H_2O	Chlorine
C_2H_5	C_4H_{10}		C_7H_6	C_2H_2O		C_2H_2N	CH_3NO_2	DHO	³⁵ Cl
C_2H_6			C_7H_7	C_2H_3O		C_2H_3N	CH_4NO_2	$H_2^{18}O$	³⁷ Cl
	C_5		C_7H_8	C_2H_4O		C_2H_4N	C_2H_6NO	O_2	H ³⁵ Cl
C_3	C ₅ H			C_2H_5O			$C_2 N_2 O$	-	H ³⁷ Cl
C ₃ H	C_5H_2		C_8H_{10}	2 0		$C_5 H_4 N$	C ₂ HN ₂ O		CCI
C_3H_2	C_5H_3		0 10	C_3H_2O		C_5H_5N	$\tilde{C_2H_2N_2O}$		CCI_2
C_3H_3	C_5H_4		C_9H_{12}	C_3H_3O		C_5H_6N	$C_2H_3N_2O$		2
C_3H_4	C_5H_5			C_3H_4O		C_5H_7N	$C_2H_5N_2O$		
C_3H_5	C_5H_6			C_3H_5O		C_5H_8N	$C_2H_6N_2O$		
C_3H_6	C_5H_7			C_3H_6O			$C_2H_7N_2O$		
C_3H_7	C_5H_8			C_3H_7O		$C_4H_4N_2$	$C_2H_8N_2O$		
C_3H_8	C_5H_9			2010 - 01/2020 - 1660					

Figure 6. Detected species and fragments in the vicinity of Rosetta.

SCHLÄPPI ET AL.: SPACECRAFT OUTGASSING

Vacuum Grease

Aincrease + T

Castiol

Microcole - 21

Microcole

Microcole

Measures to reduce contamination hazards (lessons learned so far)

- Thruster firings produce atmospheres of condensable organic contaminants, which can last for hours in the vicinity of the spacecraft!
- Spacecraft design might require new (expensive) standards
- Careful choice of location of instrument apertures on spacecraft, venting of all instruments at appropriate places!
- Modeling of contamination risks might help to mitigate the problem
- Keep surfaces near instrument apertures warm also when shaded, to avoid condensation of contaminants.
- **Duplicate instrument with spare instrument for calibration purposes**