

PREMOS: a short story about degradation (and modelling)

G. Cessateur et al PMOD/WRC, Switzerland

PREMOS instrument

SSI irradiance at 6 wavelengths

Redundancy strategies

Head A: operational channel (1 measure every 10s) Head C: backup channel of Head A (1 measure every day) Head-B C1,C2 measure during 1 minute (6 samples), about every second orbit Head-B C3,C4 measure during 2 minutes (12 samples), about once a week

PREMOS-VIS 'First Light'

ATLAS & SIM spectra convoluted with actual filter transmittance

PREMOS FR	535nm	607nm	782nm
First Light @1AU	1.913	1.858	1.174
@ T=20°	1.961	1.858	1.203
ATLAS	1.983	1.772	1.188
SORCE/SIM	1.918	1.731	1.169
	ॺ 0.5%	# +6%	♦ +2%

Venus Transit as seen by PREMOS

WIC

pmod

Similar results at 782 nm (and for SIM data), no signature in the UV

Head-A, continuous operation

- Strong degradation:
 - UV channels <1% after 300 days
 - VIS channel : 50 % left
 - IR channel > 80 %
- Contamination under solar UV exposure

Head-C, backup for Head-A

UV channels 210nm – 20% 266nm – 14 % VIS-NIR channels 535nm ≈ -1% 782nm +2%

535 nm

VIS and IR channels: contamination under solar UV exposure ?

Collaboration with the LYRA team (Brussels) and the SODISM team

Exposure time: Operational vs. Backup

- 535 30 20 40 50 10 Exposure Time (Hours) 266 30 50 20 40 10 Exposure Time (Hours)
- Different behaviour according the time exposure
- Degradation of filters according the exposure time (contamination)
- Degradation of filters according real time
 (structural change, increasing of filters' width,...)

UV Dose: Operational vs. Backup

 Still an ongoing project for assessing the degradation for the UV channels (210 and 266 nm)

Solar modeling

Main assumption: Variations in the solar irradiance are directly related to the evolution of surface magnetic flux

 $F(\lambda,t) \,=\,$

Sunspot (umbra and penumbra) S Faculae P Network F Quiet Sun C

HMI data for calculating the area for each different feature

- + $\alpha_{\mathrm{P}}(\mu_k, t)I_{\mathrm{P}}(\lambda, \mu_k) + \alpha_{\mathrm{AN}}(\mu_k, t)I_{\mathrm{AN}}(\lambda, \mu_k)$
- + $\alpha_{\mathrm{F}}(\mu_k, t)I_{\mathrm{F}}(\lambda, \mu_k))$,

Solar modeling: HMI segmentation

pmod wrc

Solar modeling

COSIR: Code Of Solar Irradiance Reconstruction

Irradiance at 215 nm

- PREMOS data could be **considered as reference** instead of SORCE data
- Calibrated data available over 3 years

- ✓ Good agreement
 for 210 nm
- ✓ Same results for 266 nm
- Only one
 unexplained
 difference for 215
 nm

- No marked impact from the sunspots on the variability in UV
- A single model of average faculae → reproduces any facula (with any physical and geometrical properties)
- Stellar variability in the UV: only one component (Ca II K), no visible images required

Irradiance at 607 nm: influence of the temperature

Irradiance at 607 nm

- Strong correlation for solar rotational variations !
- R= 0.55, rms = 349.10⁻⁶ mag / 323.10⁻⁶ mag

- RMS facula= 123.10⁻⁶ mag ; RMS umbra = 150.10⁻⁶ mag ; RMS penumbra = 116.10⁻⁶ mag
- Facula have a marked impact on rotational variability !

Irradiance at 215nm available

http://projects.pmodwrc.ch/solid-visualization/makeover/