Critical component degradation and in-
flight calibration of EUI onboard Solar
Orbiter
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® 10 instruments:

6 Remote-sensing instruments operational
during 3 x 10 day science windows per orbit

4 In-situ instruments operational continuously

@ Current launch date (baseline): July
2017 on Ariane 5

© Highly eccentric orbit around the Sun

@ 3 year Cruise Phase:

= Gravity Assist Manoeuvres at Venus &
Earth to reach operational orbit

Nominal Mission = 3.5 years,
Extended Mission = 3 years

©® Daily ground contact (except for
conjunction periods, longest = 61
days)
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S/O mission profile and orbits
(July 2017 launch)
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S/O mission profile and orbits

» SO S/C will approach the Sun 12 times below 0.3 AU and
16 times below 0.4 AU in an overall duration of 10.2 years.

» The duration that the spacecraft will stay below these
distances is 102 and 406 days, respectively.

» High temperature variations
= |Increased outgassing

» High fluxes UV, e-, p*:
= Increased degradation of materials
= |ncreased photo-deposition
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Solar Orbiter Environment:
main characteristics

Solar and Planetary Electromagnetic Radiation (EUV)

Energy [MeV]

Type Wavelength At the Earth’s distance Solar Orbiter Mission
(nm) Average Flux | Worst-Case Flux | Average Flux | Worst-Case Flux
(W/m?) (W/m?) (W/m?) (W/m?)
Near UV 180-400 118 177 323 2250
uv < 180 2.3 x102 4.6 x102 6.3 x102 0.6
uv 100-150 7.5 x103 1.5 x10-2 2.1 x102 0.2
EUV 10-100 2 x10-3 4 x103 5 x103 H5x10-2
X-Rays 1-10 b x105 1 x10¢ 1.4 x10+ 1 x10%
Flare X-Rays 0.1-1 1 x10+4 1 x102 3 %104 1 %102
l e e e e e e
Energetic Particle Radiation 1Ev2 Mission Toal -
E —s»— Nominal Science Phase —
Total mission proton fluence:1-4 e11 p+/cm2 %‘1 et |
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TID: 150 krad [Si] § —~
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EUI-OBS unit overview & channel specificities

High Resolution High-
Imager (HRI/Ly-a) Resolution
« 121.6 nm Imager
» 1 arcsec resolution
(2kx2k, 10um pix) (H.RI1/7E:JV)
* 1-2 s cadence . 1 ércgerznc
resolution
(2kx2k, 10um
pix)
* 1-2 s cadence
* Low photon
flux (limited
by small
Full-Sun Imager (FSI) aperture)

Dual-band 17.4 / 30.4 nm
9 arcsec resolution (3kx3Kk,
10um pix)

min 10 s cadence
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HRI-EUV

Focal filters: LUXEL filters
150 nm Aluminum with 20 Ipi Ni mesh grid on dedicated Aluminum frame
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Front Baffle Front filter Primary mirror

Aluminum foil with Ni mesh
Based on an off-axis Gregory telescope optimized in length and width

entrance baffle reduces the heat input reaching the entrance foil filter



HRI-Ly a

Entrance filter Narrow-band filter
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© HRI-Lya Entrance Filter from ACTON Optics
& Coatings,type FN-122-N, now procured by ©® MCP & High-voltage units
Pelham.
©® FPA: APSOLUTE front-side detector
© “open-faced” filter having the interference
coating on one side of the MgF2 substrate



Full-Sun Imager

Pupil Al filter

Mirror
@5 mm 19 x 19 mm

66 x 66 mm
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@ FSI unit is based on a Herschelian telescope optimized with a 5 mm diameter aperture pupil located at the front section of the
FSI entrance baffle.

@ Entrance filter: LUXEL filter
= Custom frame
= Hexagonal mesh
@ Multilayer structure on filter wheel
= Al/Zr/Al
= Al/Mg/Al



HRI-Ly-a entrance filter after proton fluence
iIrradiation
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may explain the increase of the visible transmission after proton irradiation.



BSI vs FSI| image sensors

@® Provided by CMOSIS sub-contractor
@ Test chip (Monolithic) on SOI (SOITEC) material, 0.18um technology (TS)
@ 10 um pixel pitch pinned photodiode (PPD) based on 4T pixel design
@ Thinned (250 and 400nm etch) for back-side illumination optimized for EUV sensitivity
@ Dual-gain pixel read out Back side imager (BSI),
Front side imagers (ESI) Baseline Ao Bl are elchen to:
AANAAAA - 400nm ; Si epi to 2.6um

\\\\\ Silicon handling (>700um)
Silicon Nitride (300NmM) [ —

- h = = Silicon epi (3pm)
. . native Si0O2 (2nm)
Silicon epi (5um) -

+ substrate (725um) ANAANA




Detector and instrument-level calibration measurements

J APSOLUTE-1 & 2 parameters to estimate

[Requirements]
= Visible
o Dual gains

Full Well [> 80 ke-]
Linearity

o

o

o

= EUV

o EQE [>50%] measured at PTB/BESSY-II
o Lag & Stability
o Flat field (challenging)

= Dark measurements
o DC, FPN offsets, Read Noise [<5 e-]

~  Robustness to SO environment
= TID with y and p+ [>100 krad [Si]]

= Displacement damages

o Used for best pixel design selection

Visible(LED)-to-EUV degradation mapping
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APSOLUTE-I detector degradation

TID effects on Dark
Current

Annealing; recovery
after 2 week at RT
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From BenMoussa et al., IEEE Transactions on Electron Devices, 2013, 60, 1701-1708
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APSOLUTE-| detector degradation (2)

Displacement damage
effects on DC
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From BenMoussa et al., IEEE Transactions on Electron Devices, 2013, 60, 1701-1708



APSOLUTE-I| detector degradation (3

Displacement damage
effects on EQE
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Signal Intensity / DN.ms *

Onboard calibration LEDs
degradation tests

LED_FW-315 - Spectra for Different Fluences - RT - I = 30 mA
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Robustness against proton
irradiation

Used for flat-field
computation, to be compared
with ground EUV flat-fields

Visible LED used on-board



LEDs (2): wavelength-dependance]
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EUI orbit profile & duty cycle

RS2 RS3
S
: -, > - - - H
day 0 1day 2 weeks 10 days 2x1 days <1 day day 150

@ Onboard calibration campaigns: EUI will perform pre-(lossy)compression calibration autonomously

= Flat-field and dark offsets onboard update (requires approval by EUI operator)
o Implemented on-board only if high relative difference are detected in calibration products.
= Off-pointing (and rolls) maneuvres for inflight EUV flat field estimations

@ C1,C2: annealing efficiency assessment
@ Degradation monitoring:

= Dark current
= Full Well
= RTS pixels



[ Cleanliness/contamination

» Careful contamination control (Solar Orbiter
Cleanliness WG led by U. Schuhle, MPS)

» EUI sensitive areas on optical-path:

= Entrance filter (2 surfaces)

= Mirrors (2 surfaces for HRI, 1 for FSI)
= Focal plane filter (2 surfaces)

= Detector entrance window (1 surface)



Cleanliness of EUI at S/C delivery

® Limitations of contamination on EUI sensitive areas

Sensitive Area Limit molecular [ng/cm?| Limit: particulate [ppm]
Delivery EOL Delivery EOL
Entrance baftle S50 370 54 300
Mirrors, filters, 50 370 54 100
internal surfaces
External H/'W 100 370 100 300
(MLI, E-Box)

@ The Entrance Filter is the first critical optical element of the EUI telescopes

= permanently exposed to solar irradiation during orbit
= strong UV radiation that can lead to polymerization of organic contaminants.
@ Purging procedures

= Gas (N2) quality grade control
= Purging flow rate control to avoid damage (limited AP) on foil filters
= Repressurization of vacuum chamber after bake-out

@ Particular and molecular witness samples (PFO, witness plates)
= to monitor cleanliness cleanliness at all AlIT activities (after assembly, vibration, vacuum/bakeout tests...)



Purge system requirements

“after EUI delivery almost continuous purging of
the EUI structural housing with clean and dry
nitrogen gas until launch. “

“longest duration without purging shall be
limited to 30 minutes per any 24 hours, except
during the vacuum tests sequences.”

“ For the purging to be interrupted, the external
environment shall be equivalent to ISO class 8
with a relative humidity of 55 + 10%.”




[ Conclusion
» EUI just passing CDR

» ROB-DeMelab working on EUI
subsystems (detectors, filters, LEDs) and
inflight calibration

» Thank you !
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