

Critical component degradation and inflight calibration of EUI onboard Solar Orbiter

Talk outline

- 1 Introduction to Solar Orbiter mis and environment
- 2 The EUI instrument & degradatic detector, filter, LED
- 4 Cleanliness & contamination
- 5 Conclusions

Samuel Gissot, Boris Giordanengo and Ali BenMoussa

- 1 - Solar-Terrestrial Center of Excellence (STCE) - 2 - Royal Observatory of Belgium (ROB)

STCE workshop on degradation and inter-calibration of instruments observing in the SXR-EUV range, 11/06/2014

Solar Orbiter S/C overview

- 10 instruments:
 - 6 Remote-sensing instruments operational during 3 x 10 day science windows per orbit
 - 4 In-situ instruments operational continuously

- Current launch date (baseline): July 2017 on Ariane 5
- Highly eccentric orbit around the Sun
- 3 year Cruise Phase:
 - Gravity Assist Manoeuvres at Venus & Earth to reach operational orbit

Nominal Mission = 3.5 years, Extended Mission = 3 years

 Daily ground contact (except for conjunction periods, longest = 61 days)

S/O mission profile and orbits (July 2017 launch)

Solar Latitude [deg]

Distance to Sun [AU]

S/O mission profile and orbits

- SO S/C will approach the Sun 12 times below 0.3 AU and 16 times below 0.4 AU in an overall duration of 10.2 years.
- The duration that the spacecraft will stay below these distances is 102 and 406 days, respectively.
- High temperature variations
 - Increased outgassing
- High fluxes UV, e⁻, p⁺:
 - Increased degradation of materials
 - Increased photo-deposition

Solar Orbiter Environment: main characteristics

Solar and Planetary Electromagnetic Radiation (EUV)

Туре	Wavelength	At the Ear	th's distance	Solar Orbiter Mission	
	(nm)	Average Flux	Worst-Case Flux	Average Flux	Worst-Case Flux
		(W/m ²)	(W/m²)	(W/m ²)	(W/m ²)
Near UV	180-400	118	177	323	2250
UV	< 180	2.3×10^{-2}	4.6×10^{-2}	$6.3 imes 10^{-2}$	0.6
UV	100-150	$7.5 imes 10^{-3}$	$1.5 imes10^{-2}$	2.1×10^{-2}	0.2
EUV	10-100	2×10^{-3}	4×10^{-3}	5×10^{-3}	5×10-2
X-Rays	1-10	5×10^{-5}	1×10^{-4}	1.4×10^{-4}	1×10^{-3}
Flare X-Rays	0.1-1	1 ×10-4	1×10^{-3}	3×10^{-4}	1×10^{-2}

Energetic Particle Radiation

- Total mission proton fluence:1-4 e11 p+/cm2
- TID: 150 krad [Si]

EUI-OBS unit overview & channel specificities

High Resolution Imager (HRI/Ly-α)

- 121.6 nm
- 1 arcsec resolution (2kx2k, 10µm pix)
- 1-2 s cadence

Full-Sun Imager (FSI)

- Dual-band 17.4 / 30.4 nm
- 9 arcsec resolution (3kx3k,
- 10µm pix)
- min 10 s cadence

High-Resolution Imager (HRI/EUV)

- 17.4 nm
- 1 arcsec resolution (2kx2k, 10µm pix)
- 1-2 s cadence
- Low photon flux (limited by small aperture)

HRI-EUV

Aluminum foil with Ni mesh

- Based on an off-axis Gregory telescope optimized in length and width
- entrance baffle reduces the heat input reaching the entrance foil filter

HRI-Ly α

- HRI-Lya Entrance Filter from ACTON Optics & Coatings,type FN-122-N, now procured by Pelham.
- "open-faced" filter having the interference coating on one side of the MgF2 substrate
- MCP & High-voltage units
- FPA: APSOLUTE front-side detector

Full-Sun Imager

FSI unit is based on a Herschelian telescope optimized with a 5 mm diameter aperture pupil located at the front section of the FSI entrance baffle.

Entrance filter: LUXEL filter

- Custom frame
- Hexagonal mesh
- Multilayer structure on filter wheel
 - Al/Zr/Al
 - Al/Mg/Al

HRI-Ly-α entrance filter after proton fluence irradiation

2 µm

20.3 ur

Det Mag

SEM: cracks observed on AI top coating

may explain the increase of the visible transmission after proton irradiation.

BSI vs FSI image sensors

- Provided by CMOSIS sub-contractor
- Test chip (Monolithic) on SOI (SOITEC) material, 0.18μm technology (TS)
- \sim 10 µm pixel pitch pinned photodiode (PPD) based on 4T pixel design
- Thinned (250 and 400nm etch) for back-side illumination optimized for EUV sensitivity

Detector and instrument-level calibration measurements

- APSOLUTE-1 & 2 parameters to estimate [Requirements]
 - Visible
 - Dual gains
 - Full Well [> 80 ke-]
 - Linearity
 - Visible(LED)-to-EUV degradation mapping
 - EUV
 - EQE [>50%] measured at PTB/BESSY-II
 - Lag & Stability
 - Flat field (challenging)
 - Dark measurements
 - DC, FPN offsets, Read Noise [<5 e-]
- Robustness to SO environment
 - TID with γ and p+ [>100 krad [Si]]
 - Displacement damages
- Used for best pixel design selection

APSOLUTE-I detector degradation

TID effects on Dark Current

Annealing; recovery after 2 week at RT

APSOLUTE-I detector degradation (2)

Displacement damage effects on DC

- No full DC recovery
- Permanent damages

From BenMoussa et al., IEEE Transactions on Electron Devices, 2013, 60, 1701-1708

APSOLUTE-I detector degradation (3)

Displacement damage effects on EQE

TID on EQE

(permanent damages)

From BenMoussa et al., IEEE Transactions on Electron Devices, 2013, 60, 1701-1708

Onboard calibration LEDs degradation tests

- Robustness against proton irradiation
- Used for flat-field computation, to be compared with ground EUV flat-fields

Visible LED used on-board

LEDs (2): wavelength-dependance

EUI orbit profile & duty cycle

Onboard calibration campaigns: EUI will perform pre-(lossy)compression calibration autonomously

- Flat-field and dark offsets onboard update (requires approval by EUI operator)
 - Implemented on-board only if high relative difference are detected in calibration products.
- Off-pointing (and rolls) maneuvres for inflight EUV flat field estimations
- C1,C2: annealing efficiency assessment
- Degradation monitoring:
 - Dark current
 - Full Well
 - RTS pixels

Cleanliness/contamination

- Careful contamination control (Solar Orbiter Cleanliness WG led by U. Schühle, MPS)
- EUI sensitive areas on optical-path:
 - Entrance filter (2 surfaces)
 - Mirrors (2 surfaces for HRI, 1 for FSI)
 - Focal plane filter (2 surfaces)
 - Detector entrance window (1 surface)

Cleanliness of EUI at S/C delivery

Limitations of contamination on EUI sensitive areas

Sensitive Area	Limit molecular [ng/cm ²]		Limit: particulate [ppm]	
	Delivery	EOL	Delivery	EOL
Entrance baffle	50	370	54	300
Mirrors, filters, internal surfaces	50	370	54	100
External H/W (MLI, E-Box)	100	370	100	300

The Entrance Filter is the first critical optical element of the EUI telescopes

- permanently exposed to solar irradiation during orbit
- strong UV radiation that can lead to polymerization of organic contaminants.

Purging procedures

- Gas (N2) quality grade control
- Purging flow rate control to avoid damage (limited $\Delta P)$ on foil filters
- Repressurization of vacuum chamber after bake-out
- Particular and molecular witness samples (PFO, witness plates)
- to monitor cleanliness cleanliness at all AIT activities (after assembly, vibration, vacuum/bakeout tests...)

Purge system requirements

- "after EUI delivery almost continuous purging of the EUI structural housing with clean and dry nitrogen gas until launch. "
- "longest duration without purging shall be limited to 30 minutes per any 24 hours, except during the vacuum tests sequences."
- * For the purging to be interrupted, the external environment shall be equivalent to ISO class 8 with a relative humidity of 55 ± 10%."

Conclusion

EUI just passing CDR

 ROB-DeMeLab working on EUI subsystems (detectors, filters, LEDs) and inflight calibration

Thank you !