Reconstruction of the solar spectral irradiance
from magnetograms: a data-driven approach
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1. Objective: get the real-time UV flux

The Solar Spectral Irradiance is a key input for space weather users and for
space climate. However, present observations (SORCE, TIMED) and models
(NRLSSI, SATIRE, SOLAR2000, ...) hardly provide it in real time.

Here we show how the spectral irradiance in the UV (6-309 nm, without flares)
can be reconstructed automatically using an empirical model that uses solar
magnetograms as sole input.
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2. The Model: surface magnetism says it all

Many studies have shown that solar surface magnetism governs irradiance
variations on time scales < few solar cycles [Wenzler, Unruh, Preminger, Lean,
Fréhlich, Solanki, Domingo, Ball, etc.].

We segment solar magnetograms from SDO/HMI into different features. Most
do this according to intensity; we segment instead according to the size of

the features, which alleviates some of the magnetic field calibration
problems.
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We assume a linear model (as for SATIRE, etc), wherein each class
contributes to the spectrum proportionally to its total area (filling factor F)
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Geometric projection effects are taken care of by splitting the solar surface
into different annuli that may have different contributions. Finally
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In most models, the spectra Sy,i;(1) are derived from model atmospheres. We,

on the contrary, estimate them from the observations. Our model is thus
empirical and data-adaptive.
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3. Model validation

We train the model by using 3 years of observations (April 2010-July 2013)
from SORCE/SOLSTICE (120-309 nm), TIMED/SEE (37-120 nm) and SDO/
EVE (6.5-37 nm), with a daily cadence and 1 nm resolution. Our model
therefore is only as good as the input UV observations are!

The model is trained by using 80% of the observations, and then tested on
the remaining 20%.

The model performance is quantified by means of the root mean square error
(RMSE), normalized to the standard deviation (= solar cycle variability) of the
observations

V/ (et A)?)e
()

RMSE()\) =

Do we need a non-linear model ? No, this does not lead to a significant
reduction in the RMSE.
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3. How complex should the model be ?

Two key questions are:

- How many types of solar features do we need to distinguish? Most models
impose 3-7 classes without true justification.

-« How many annuli do we need to properly capture centre-to-limb effects?
Most models use 3-12 annuli. Again with little justification.

Only 3 types of structures (large, small, quiet Sun) are required to
properly fit the observations, given their uncertainties. No more than 3
annuli are needed = less than expected!
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4. How well does the model perform ?
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spectral irradiance

©c o
> o
T T

o
[N
T

-

o
o)

Relative contribution of
the two classes (quiet Sun
excepted)

°
)
T

o
IS
T

I small structures
[ large structures

©
)
T

relative contribution relative contribution
o

o

The model performs remarkably well: its performance is comparable to
that of the better-known NRLSSI model, which uses solar proxies only.
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Example: reconstruction of
the spectral irradiance at 8
nm.
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Example: reconstruction of
the spectral irradiance at
78 nm: this band has
instrumental problems
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5. Future improvements

This model is ready to be run in real-time, but still needs several fixes:

 The reconstruction improves by 0-10% when the filling factors F are first
decomposed into 2 time scales, with a cutoff around 3 solar rotations. This
unexpected effect is likely caused by the contribution of structures near or
behind the limb.

« An extension to the visible requires a segmentation of continuum images, in
addition to magnetograms.
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