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The detector statistics of CCD-based imagers are fairly well

understood and are straightforward to model as a combina-

tion of read and Poisson (photon counting) noise. I demon-

strate how an understanding of these statistics can be em-

ployed to spatially or temporally process solar images, clearly

distinguishing instrument noise from dynamics and structure

on the Sun.

Understanding and taking advantage of the statistics of the

data is vital to getting the most out of the data. More specif-

ically, it ensures that the interpretation of the data is due to

signal, not noise.

This is often ignored when analyzing solar image sequences, even

though noise statistics are fairly simple:

I Mostly shot noise, σI ∝
√
I .

I Small additive Gaussian read nosie.

I One or two other minor sources may be present - ignored here

for simplicity.

Combined with very modest assumptions about the image se-

quence in question, applying basic understanding of these statis-

tics can cast much new light on the data. I show examples of

both spatial and temporal filtering. AIA data is used for both

examples.

Temporal Filtering:

I Median filter the time series around each each pixel with a

given width (i.e., in time).

I Use median to estimate detector statistics for the pixel.

I Compute difference between median and actual data value,

compare to error.
I Form image of residuals:

I Intensity of image shows statistical significance of deviation from median.
I Insensitive to monotonically varying intensity;
I Requires ’impulsive’ intensity variation.

I Sequence of images can be used to form animation (see tablet or ask for

demo).
Figure: Frame showing statistically significant residuals after applying

a temporal median filter (width is 15 frames or 30 minutes).

Spatial Filtering:

I Similar to temporal filtering, but in 2 spatial dimensions, across

a single image
I Filtering is applied with several spatial scales

I Modified Gaussian blur (described below)
I Can be use to show variation at each scale (image below).
I Use coarsest spatial scale consistent with original image, given detector

noise.
I Alternatively, can be combined into one image:

I A form of noise reduction (e.g., AIA 94 Å image on right).

Figure: Multiscale noise reduction applied to an AIA 94 Å image.
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Figure: Example of multiscale (semi)-positivity-enforcing decomposition of AIA 193 Å image. Rightmost image shows sum of other images.

Modified Gaussian Blur (work in progress)
I The standard Gaussian blur smooths all length scales to smaller

than its radius.
I Contributions from small scale positive features are still present, just spread

out

I We’d like something similar which leaves out smaller scales
entirely:
I Start with Gaussian blurred image, IB and original, I .
I Parts of image which are greater than blurred image are from smaller

features.
I Let I+ = I − IB , and set its negative values equal to 0.
I Gaussian blur I − I+, and make it the new IB .
I Iterate.

I Result is image with greatly reduced contribution from scales less

than the Gaussian blur radius.

What’s next?
I Much of this is similar to wavelet filtering;

I Not normally applied to time domain in this manner
I Photon counting does not normally play a role

I The corona is optically thin:
I Superposition of features on many scales, each positive-definite.

I Wavelet decompositions susceptible to negative ringing

I Median somewhat less prone than convolutional methods

I A positive-definite decomposition should be possible:
I Can do multidimensional fitting (e.g., Powell’s); very slow.
I Want to do it quickly and robustly, using detector statistics.

I Iteration + (Gaussian) convolution shows some

promise, but limitations are unclear. Reinventing the

wheel?

The National Center for Atmospheric Research is sponsored by the National Science Foundation.


