On Power-law Distributions of Observed Solar Features

Clare. E. Parnell

University of St Andrews

7th Solar Image Processing Workshop, 2014

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

Outline

- Observed Power Law Distributions
 - Distributions of Flare Energies
- Pactors that effect the power-law index
 - Observational factors
 - Fitting/Modelling distribution
- Maximum Likelihood Estimates (MLE)
 - Method of MLE
 - Modelling a Power Law using MLE
 - Choosing range to fit power law to
 - Example & Plotting
 - Goodness of Fit

Summary

◎ ▶ ▲ 三 ▶ ▲ 三 ▶ 三 三 ● ○ ○ ○

Distributions of Flare Energies

Outline

- Observed Power Law Distributions
 - Distributions of Flare Energies
- Pactors that effect the power-law index
 - Observational factors
 - Fitting/Modelling distribution
- 3 Maximum Likelihood Estimates (MLE)
 - Method of MLE
 - Modelling a Power Law using MLE
 - Choosing range to fit power law to
 - Example & Plotting
 - Goodness of Fit

Summary

◆母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三日 ● ○○○

Observed Power Law Distributions

Factors that effect the power-law index Maximum Likelihood Estimates (MLE) Summary

Distributions of Flare Energies

Distributions of Flare Energies

Clare. E. Parnell Power-law Distributions

ELE DQC

Observed Power Law Distributions

Factors that effect the power-law index Maximum Likelihood Estimates (MLE) Summary

Distributions of Flare Energies

Distributions of Flare Energies

_

Distributions of Flare Energies

Power-law indices of Nano/Microflares

Ref.	γ
Krucker and Benz 1998	2.59
Berghmans, Clette and Moses 1998	1.35
Parnell and Jupp 2000	2.52
Parnell and Jupp 2000	2.04
Aschwanden et al. 2000	1.80
Pres, Phillips and Falewicz 2001	2.47
Benz and Krucker 2001	2.31

Power law indices of nano-/micro-flare energy distributions (Benz & Krucker, 2001)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Observational factors Fitting/Modelling distribution

Outline

- Observed Power Law Distributions
 Distributions of Flare Energies
- Pactors that effect the power-law index
 - Observational factors
 - Fitting/Modelling distribution
- 3 Maximum Likelihood Estimates (MLE)
 - Method of MLE
 - Modelling a Power Law using MLE
 - Choosing range to fit power law to
 - Example & Plotting
 - Goodness of Fit

Summary

Observational factors Fitting/Modelling distribution

Power-law indices: Observational factors

Ref.	γ	Method	Synch (mins)	Height model	Instru	Emission line	Select ⁿ
KB 98	2 59	em	2	const	FIT	Fe IX/XII	no
BCM 98	1.35	rl	event	none	EIT	Fe XII	no
PJ 00	2.52	em	2	const	TRACE	Fe IX/XII	no
PJ 00	2.04	em	2	A ^{1/2}	TRACE	Fe IX/XII	no
AEA 00	1.80	em	6	$A^{1/2}$	TRACE	Fe IX/XII	ves
PPF 01	2.47	em	?	?	Yohkoh	continuum	no
BK 01	2.31	em	2	$A^{1/2}$	EIT	Fe IX/XII	no

Power law indices of nano-/micro-flare energy distributions (Benz & Krucker, 01)

- Krucker and Benz (KB), Berghmans, Clette and Moses (BCM), Parnell and Jupp (PJ), Aschwanden et al. (AEA), Pres, Phillips and Falewicz (PPF) and Benz and Krucker (BK)
- Method: emission measure increase (em) or radiative loss (rl)
- Synchrony time window used to determine events
- Height model for density variation
- Selection of flares

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Observational factors Fitting/Modelling distribution

Comparison of Slopes: Observational Factors

Clare. E. Parnell

Power-law Distributions

Observational factors Fitting/Modelling distribution

Outline

- Observed Power Law Distributions
 - Distributions of Flare Energies
- 2 Factors that effect the power-law index
 - Observational factors
 - Fitting/Modelling distribution
- 3 Maximum Likelihood Estimates (MLE)
 - Method of MLE
 - Modelling a Power Law using MLE
 - Choosing range to fit power law to
 - Example & Plotting
 - Goodness of Fit

Summary

Observational factors Fitting/Modelling distribution

Power Law Fitting Methods

- Histogram: 4 choices
 - Bin size
 - Range of values to which power law fitted (cutoff)
 - Line fitting method
 - Weighted or unweighted
- Maximum Likelihood: 1 choice
 - Range of values to which power law fitted (cutoff)

$$\hat{\gamma} = \frac{1}{\operatorname{mean}(\log(E/\hat{E_0}))} + 1$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Observational factors Fitting/Modelling distribution

Comparison of Slopes: Fitting Methods

Clare. E. Parnell Power-law Distributions

Observational factors Fitting/Modelling distribution

Comparison of Slopes: Fitting Methods

Aschwanden &	Histogram	Maximum
Parnell (2002)	line fit	Likelihood
TRACE 171		
 Events (1215) 	1.93 ± 0.06	$\textbf{1.91} \pm \textbf{0.03}$
 Flares (666) 	1.71 ± 0.10	$\textbf{1.87} \pm \textbf{0.03}$
TRACE 195		
 Events (1098) 	1.94 ± 0.06	$\textbf{1.88} \pm \textbf{0.03}$
 Flares (603) 	1.75 ± 0.07	$\textbf{1.80} \pm \textbf{0.03}$
YOHKOH SXT		
 Events (185) 	1.74 ± 0.08	$\textbf{1.87} \pm \textbf{0.07}$
 Flares (103) 	1.52 ± 0.10	1.71 ± 0.07

Histograms on small data numbers unreliable. (See poster by Elke D'Huys)

= 200

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Outline

- Observed Power Law Distributions
 - Distributions of Flare Energies
- Pactors that effect the power-law index
 - Observational factors
 - Fitting/Modelling distribution
- Maximum Likelihood Estimates (MLE)
 - Method of MLE
 - Modelling a Power Law using MLE
 - Choosing range to fit power law to
 - Example & Plotting
 - Goodness of Fit

Summary

Method of MLE

Method of Maximum Likelihood Estimation

- Data set: E_i where i = 1...n
- Assume data are distributed with a particular form with probability density function: $f(E_i; \alpha_i)$, where α_i are

i = 1...m unknowns

- Find best estimates of parameters α_i:
 - **O** Define likelihood function: $I(\alpha_j) = \prod_{i=1}^{n} f(E_i; \alpha_j)$

Take logs of likelihood function:

$$L(\alpha_j) = \log(L(\alpha_j)) = \sum_{i=1}^n \log(f(E_i; \alpha_j)).$$

Find most likely distribution by finding maximum of (log-)likelihood function by solving

$$\frac{dL}{d\alpha_i} = 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

- Observed Power Law Distributions
 - Distributions of Flare Energies
- Pactors that effect the power-law index
 - Observational factors
 - Fitting/Modelling distribution
- Maximum Likelihood Estimates (MLE)
 - Method of MLE
 - Modelling a Power Law using MLE
 - Choosing range to fit power law to
 - Example & Plotting
 - Goodness of Fit

Summary

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Modelling a Power Law Distribution using MLE

- Data set: E_i where i = 1...n
- Assume follows a power law distribution, so pdf: $f(E_i; \gamma, E_0) = \frac{\gamma-1}{E_0} \left(\frac{E_i}{E_0}\right)^{-\gamma}, \qquad E_i \ge E_0.$

• Likelihood function: $I(\gamma, E_0) = \prod_{i=1}^{n} \frac{\gamma-1}{E_0} \left(\frac{E_i}{E_0}\right)^{-\gamma}$

Log-likelihood function:

$$L(\gamma, E_0) = \sum_{i=1}^{n} \left[\log(\gamma - 1) - \log(E_0) - \gamma \log\left(\frac{E_i}{E_0}\right) \right]$$

• Best estimate of parameters $\gamma = \hat{\gamma}$ and $E_0 = \hat{E}_0$:

$$\hat{\gamma} = 1 + \frac{n}{\sum\limits_{i=1}^{n} \log\left(\frac{E_i}{E_0}\right)}$$
 $\hat{E}_0 = \min(E_i)$

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Standard Errors on Estimated Parameters

• Calculating error on parameter $\hat{\alpha}_i$:

$$error_{lpha_j} = \left(rac{d^2 L}{dlpha_j^2}
ight)^{-1/2}$$

Error for power law index

• *error*_{γ} = $(\hat{\gamma} - 1)n^{-1/2}$

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Outline

- Observed Power Law Distributions
 - Distributions of Flare Energies
- Pactors that effect the power-law index
 - Observational factors
 - Fitting/Modelling distribution
- Maximum Likelihood Estimates (MLE)
 - Method of MLE
 - Modelling a Power Law using MLE
 - Choosing range to fit power law to
 - Example & Plotting
 - Goodness of Fit

Summary

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

1= 990

크 > 크

Identifying range to fit power law to (cutoff)

Need to identify a cutoff below which all energies ignored

 Observational constraints can cause under-estimation of events with given energies - important!

Choose from looking at a plot of the data

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Outline

- Observed Power Law Distributions
 - Distributions of Flare Energies
- Pactors that effect the power-law index
 - Observational factors
 - Fitting/Modelling distribution
- Maximum Likelihood Estimates (MLE)
 - Method of MLE
 - Modelling a Power Law using MLE
 - Choosing range to fit power law to
 - Example & Plotting
 - Goodness of Fit

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

<ロ> <四> <四> < 回> < 回> < 回> < 回> < 回</p>

Example data set

- Data from Hannah et al. (2008):
 - Energies of microflares (< C Class) from RHESSI between 2002-2007
 - Peak thermal energies (integrate over 16 secs about the time of peak 6-12keV emission)
 - Number of events: 3061
 - Range of flare energies: $1.70 \times 10^{25} 1.36 \times 10^{30}$ ergs

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

◆□ → ◆ □ → ▲ □ → ▲ □ → ◆ □ →

Cumulative Distribution Functions (CDFs)

First look plots:

- CDF gives the probability of having a value lower than *E*: $F(E) = \int_{E_0}^{E} f(x) dx$
- Complementary CDF gives the probability of having a value greater than *E*:

S(E) = 1 - F(E)

- To calculate CDF & cCDF of data:
 - Sort data such that: $E_i < E_{i+1} \quad \forall \ E_i \quad i = 1...n$
 - Empirical CDF: $F_i = \frac{i-1/2}{n}$

• Empirical cCDF: $S_i = 1 - F_i = \frac{n - (i - 1/2)}{n}$

- Visualisation
 - CDF: Plot F_i against sorted E_i
 - cCDF: Plot $S_i = 1 F_i$ against sorted E_i

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

Cumulative Distribution Function (CDF)

Clare. E. Parnell Power-law Distributions

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

Complementary CDF (cCDF)

Clare. E. Parnell Power-law Distributions

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

Choose cutoff

Clare. E. Parnell Power-law Distributions

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Determine power law index using MLE

MLE Formulae for parameter estimations

$$\hat{E}_0 = \min(E_i)$$
 $\hat{\gamma} = 1 + \frac{n}{\sum\limits_{i=1}^n \log\left(\frac{E_i}{\hat{E}_0}\right)}$

- $n = 1920 \Rightarrow E_0 = 10^{28} \text{ ergs}, \hat{\gamma} = 1.79 \pm 0.02$
- $n = 1314 \Rightarrow E_0 = 2 \times 10^{28} \text{ ergs}, \, \hat{\gamma} = 2.00 \pm 0.03$
- $n = 755 \Rightarrow E_0 = 4 \times 10^{28} \text{ ergs}, \, \hat{\gamma} = 2.24 \pm 0.05$

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Compare Empirical & Model cCDFs

- Empirical cCDF: $S_i = 1 F_i = \frac{n (i 1/2)}{n}$
- Power law cCDF: $1 F(E_i; \hat{\gamma}, \hat{E}_0) = \left(\frac{E_i}{\hat{E}_0}\right)^{1-\hat{\gamma}}$
- Visualisation
 - Plot: $1 F_i$ against sorted E_i
 - Over plot: $1 F(E_i; \hat{\gamma}, \hat{E}_0)$ against E_i

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

Comparison of Empirical & Model cCDF

Clare. E. Parnell Power-law Distributions

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

- Observed Power Law Distributions
 - Distributions of Flare Energies
- Pactors that effect the power-law index
 - Observational factors
 - Fitting/Modelling distribution
- Maximum Likelihood Estimates (MLE)
 - Method of MLE
 - Modelling a Power Law using MLE
 - Choosing range to fit power law to
 - Example & Plotting
 - Goodness of Fit

Summary

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Absolute Goodness of Fit

- MLE determines the best pdf of given form... but this distribution may not be a good fit to the data!
- To determine if a pdf is a good fit to the data we make a percentile-percentile plot (P-P plot)
 - Plot Model CDF against Empirical CDF
 i.e., F(E_i; â_j) against E_i

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

三日 のへの

Example P-P plot

Clare. E. Parnell Power-law Distributions

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Compare Empirical & Model PDFs

- Power law PDF: $f(E_i; \hat{\gamma}, \hat{E}_0) = \frac{\hat{\gamma} 1}{\hat{E}_0} \left(\frac{E_i}{\hat{E}_0}\right)^{-\hat{\gamma}}$
- Empirical power law PDF: $f_i(\hat{\gamma}, \hat{E}_0) = \frac{\hat{\gamma}-1}{E_i}(1 F_i)$
- Visualisation
 - Plot f_i against sorted E_i
 - Over plot $f(E_i, \hat{\gamma}, \hat{E}_0)$ against E_i

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

Empirical & Model PDFs

Clare. E. Parnell Power-law Distributions

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

Slopes from Histogram Method?

E _{min}	bin size	Number of	γ	Maximum
(ergs)		bins		Likelihood
10 ²⁸	0.1	49	1.98 ± 0.05	(1.79 ± 0.02)
10 ²⁸	0.4	12	$\textbf{2.00} \pm \textbf{0.06}$	
10 ²⁸	0.8	6	1.98 ± 0.08	
2×10^{28}	0.1	42	$\textbf{2.10}\pm\textbf{0.06}$	(2.00 ± 0.03)
$2 imes 10^{28}$	0.4	10	$\textbf{2.13} \pm \textbf{0.06}$	
$2 imes 10^{28}$	0.8	5	$\textbf{2.10} \pm \textbf{0.05}$	
$4 imes 10^{28}$	0.1	36	$\textbf{2.18} \pm \textbf{0.07}$	$(\textbf{2.24}\pm\textbf{0.05})$
$4 imes 10^{28}$	0.4	9	$\textbf{2.16} \pm \textbf{0.07}$	
$4 imes 10^{28}$	0.8	4	$\textbf{2.12}\pm\textbf{0.09}$	

Method of MLE Modelling a Power Law using MLE Choosing range to fit power law to Example & Plotting Goodness of Fit

Histogram Plot

Clare. E. Parnell Power-law Distributions

Maximum Likelihood Estimation:

- Easy to use
- Only one freedom: range over which power-law is fitted
- Much more reliable for smaller data sets than creating a histogram (binning data)
- To be believable, your power law should cover several (>2) orders of magnitude

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●