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Introduction and Machine Learning Principles
Examples of Classifiers

How to Perform Experiments

Metrics

Suggested Readings
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Machine learning studies computer
algorithms for learning to do stuff.
(Schapire)

A computer program is set to learn
from an experience E with respect to
some task T and some performance
measure P if its performance on T as
measured by P improves with

experience E.
(Mitchell)

MACHINE LEARNING
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PROBLEM DESCRIPTION
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Sample

1 Mpx => 1076 features

PROBLEM DESCRIPTION
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Sample

1 Mpx => 1076 features

 Computationally expensive

* Curse of dimensionality

PROBLEM DESCRIPTION
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Mean, variance, entropy,...
SIFT
Harris Corner "

PROBLEM DESCRIPTION
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Feature extraction is
essentially a

dimensionality reduction -
problem with the goal of

finding meaningful

projections of the original

data vectors

PROBLEM DESCRIPTION
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h(X)=f(W' X+w,)

. X
Classifier 2

JO)

Activation function

CLASSIFICATION PROBLEM

Decision Boundary—"



CLASSIFIER TRAINING

h(X)=f(W' X +w,

L(w(x),h(X))

Loss Function
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* k Nearest Neighbors (kNN)
* Neural Network (NN)

* Support Vector Machine

EXAMPLES OF CLASSIFIERS
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No training set

Reference Set

k Nearest Neighbors

CLASSIFIERS
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Algorithm steps:

Y2
S
@) . '
Q + Consider the fixed value k Ay o
= O

o]0 e.g. K=1 ° 0o o o
z 4 N
— * Find the K nearest neighbors ¢ "
O ® o @0 o

e o
o * Setthe class according to e © .
é’ a majority voting e
7

X




UCL

= ‘ CLASSIFIERS
e B R B o

* |sone of the simplest machine learning algorithm;
 There is no training stage;
* The classification function is approximated locally;

* Several variants of the original algorithm have been proposed.

k Nearest Neighbors
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Algorithm steps:

e Consider the fixed value k %>
e.g. K=3

* Find the K nearest neighbors

e Set the class according to
a majority voting

k Nearest Neighbors
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Inspired by the central nervous system, a Neural Network is a
set of interconnected “neurons” which compute value from

inputs

Vi

Yk

NEURAL NETWORK
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Inspired by the central nervous system, a Neural Network is a
set of interconnected “neurons” which compute value from

inputs

Vi

Yk

NEURAL NETWORK

Input Layer
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Inspired by the central nervous system, a Neural Network is a
set of interconnected “neurons” which compute value from
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Hidden Layer
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Inspired by the central nervous system, a Neural Network is a
set of interconnected “neurons” which compute value from

inputs

Vi

Yk

NEURAL NETWORK

Output Layer
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The value of each hidden unit is computed by an activation
function according to the value of weights of the first layer

and the inputs.

—C

(D

Hidden Layer

z; =h(a;)

Activation function

D
_ (1)
i=1
Input Linear
Combination
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The output value is computed by an activation function
according to the values of the weigths of the second layer and
the hidden units.

Vi = O'(Clk)
Activation function

Vi

NEURAL NETWORK

Yk j=1

Output unit
activations

Output Layer
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The training of the network consists in estimating the
layers’ weights

NEURAL NETWORK
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e Activation function generally are sigmoid function

1
1+exp(-a)

o(a)=

* The number of layers and the number of the hidden units
are hyper-parameters of the model

NEURAL NETWORK



SUPPORT VECTOR MACHINE
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In the support vector machines the decision boundary is
chosen to be the one for which the margin is maximized.

Xy
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In the support vector machines the decision boundary is
chosen to be the one for which the margin is maximized.

SUPPORT VECTOR MACHINE
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In the support vector machines the decision boundary is

chosen to be the one for which the margin is maximized.

.X2 . :

e®e
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Support Vector

SUPPORT VECTOR MACHINE

Decision Boundary
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An important property of support vector machines is that the
determination of the model parameters corresponds to a
convex optimization problem, and so any local solution is also
a global optimum.

N

L(w,a)= %HWHZ — E a, {tn v_vqb(xn) +b)— 1}

n=1

y(x) Ea k(x Xn

SUPPORT VECTOR MACHINE
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1]
E An important property of support vector machines is that the
L determination of the model parameters corresponds to a
g convex optimization problem, and so any local solution is also
> aglobal optimum. Lagrange Multiplier
4 Ground truth
]9 Loss 1 2 C l ﬁ_
U Function L(w,a) = _HWH - E Ay {t”‘ we(x, )+ b) - 1}
;'I 2 n=1 ‘
Prediction
]_.
. N
0 Model  y(x)= Y a,tk(x,Xn)
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U L Kernel
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* The SVM is widely used is several domains.

e Several variants of the algorithm and kernel types have
been proposed in the literature.

 The classifier, according also to the kernel used, requires
the tuning of some hyper-parameters.

SUPPORT VECTOR MACHINE
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CLASSIFICATION SCHEME
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The classification model depends on the samples used in the
training stage. The ability of the system to recognize new
samples depend on the parameters used.

* How to perform tests independently of the samples used

* How to chose the optimal classifier’ hyper-parameters

HoOow TO PERFORM CLASSIFICATION
EXPERIMENTS
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Descriptors
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Training

Testing

RANDOM SUB-SAMPLING
Samples
o0
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Descriptors
—_—>

Training

The model depends
on the samples used
in the training

Testing

RANDOM SUB-SAMPLING
Samples
o0
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> Fold 1
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Define k
independent
folds
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> Fold 1
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VALIDATION
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All the samples tested
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Training set 1
(K-1) Folds

PARAMETERS
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Training set 1
(K-1) Folds

PARAMETERS
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Classifier




K FOLD CROS-VALIDATION

Training set 1
(K-1) Folds

PARAMETERS

-

Classifier

=3 Prediction 1

T

Testset 1
1 Fold




K FOLD CROS-VALIDATION

Training set K
(K-1) Folds

PARAMETERS

-

Prediction 1

Repeat for
all the K folds

Classifier

Prediction K-1
=3 Prediction K

T

Test set K
1 Fold




PARAMETERS TUNING

Training set 1
(K-1) Folds

PARAMETERS

-

Classifier

= Prediction

T

Test
1 Fold
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Fix the value of the
Classifier parameters:
Pl’P2’P3’ XK}

Training set 1

(K-1) Folds 3  (Classifier

Split the training
in K, folds

K FOLD CROS-VALIDATION
ON THE TRAINING SET
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Fix the value of the
Classifier hyper-parameters:
P.,P,,Ps, ...

Training

(K,-1) Folds ——>| Classifier

Use K, folds as
Training set

K FOLD CROS-VALIDATION
ON THE TRAINING SET
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Fix the value of the
Classifier hyper-parameters:
P.,P,,Ps, ...

Training E - : Prediction
(K,-1) Folds Classifier on fold 1

1

Use the remaining Test
fold as test set 1 Fold

K FOLD CROS-VALIDATION
ON THE TRAINING SET
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Fix the value of the

Classifier hyper-parameters: Prediction

P,P2Ps, ... on fold 1

Training Classif Prediction
(K,-1) Fold > Classiner  =———>  ,nfold2

Repeat for all Test Prediction
the K, folds 1 Fold on fold K,

K FOLD CROS-VALIDATION
ON THE TRAINING SET
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Fix the value of the
Classifier hyper-parameters:

Prediction
P,P,,Ps, ... on fold 1

Training Classif Prediction
(K,-1) Fold > Classiner  =———> | 5,old2

Repeat for all Test Prediction
the K, folds 1 Fold on fold K,

K FOLD CROS-VALIDATION
ON THE TRAINING SET

Average performance of the system using hyper-parameters:J
P.,P,,Ps, ...



UCL

A N PARAMETERS
ciboi | B & 7

 Repeat the test with several hyper-parameters values

* Chose the set of hyper-parameters that provides the best
performance

K FOLD CROS-VALIDATION
ON THE TRAINING SET

* Train the classifier using the chosen hyper-parameters
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K fold cross validation
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System performance are computed as average of performance
among the folds

HOW TO PERFROM EXPERIMENTS
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Ground Truth
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P n
> 5 True False
O Acc= TP+TN Positive | Positive
< P+N
x
: ~
O N False True
2 Negative | Negative

The number of samples
correctly classified over the P N

total number of samples
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Accuracy = 80%

ACCURACY LIMITATIONS
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e Pattern Recognition and Machine Learning; C.M.Bishop
 Pattern Classification; R.O. Duda, P.E. Hart, D.G. Stork
* Machine Learning; T.M.Mitchell

e Statistics and Data with R; Y. Cohen, J.Y. Cohen

Trevor Hastie
Robert Tibshirani
Jerome Friedman

Statistics and Data
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Pattern

Classification
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Data Mining, Inference, and Prediction
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