

Hard X-ray observations of non-flaring active regions & coronal loops Iain G. Hannah **University of Glasgow** iain.hannah@glasgow.ac.uk

Overview

- Importance of energetic particles
 - (Direct ?) product of the flaring energy release
 - Non-thermal particles heat the solar atmosphere in flares
- Why hard X-rays (HXRs: > few-tens keV)
 - Direct signature of accelerated electrons
 - Radio and EUV also provide diagnostics of non-thermal
 - Range also cover hot SXRs
- Recent observations
 - Mostly limits as optimized for flare observations
- Future observations
 - Need higher sensitivity & better dynamic range

"Typical" Big Flare

- Magnetic reconnection facilitates the liberation of stored energy
- A sizeable fraction goes into accelerating particles
 - Sun is a prolific particle accelerator
- When theses particles stop and thermalize in chromosphere get:
 - Bright HXR footpoints (10+ keV)
 - Heats material → expands forming hot coronal loops (SXR, EUV)

 $I(\epsilon) \propto$

Neupert Effect

3

Microflares

- Similar picture for microflares •
 - A, B class/RHESSI attenuators out
 - Non-thermal HXR (>6 keV)
 - Heating (>10MK)
 - More frequent than large flares
- All RHESSI microflares in AR •
 - Over 24,000 (2002-2007)

02:08:00

Start Time (09-Nov-06 02:07:00)

02:09:00

02:07:00

Nanoflares ?

- Variety of thermal signatures (see rest of meeting)
 - Hot non-flaring active regions/coronal loops
 - Brightpoints/bursts/"nanoflares" in Quiet Sun
 - Consistently hot corona
- Parker's nanoflare to explain myriad of heated phenomena
 - Energy released via reconnection of braided fields
 - Ensemble/storm/cacophony to power non-flaring features
 - Accelerated electrons would quickly thermalize so hard to directly see?
 - Larger ensemble powering larger flares ?
 - But mostly done with MHD (no particle) models......

Parker 1972

Observed Events	Features	<u>Relationship</u>
"Regular" Flares (SEE) (GOES C,M,X)	Particle acceleration & heating	Same physics: micro are wee SEE
Microflares (GOES A,B)	Particle acceleration & heating	
Active regions/ coronal loops	Heating Only (?)	Powered by microflare or nanoflares*? Are nano small micro?
Quiet Sun bright points/ network flares/ coronal loops/ nanoflares†	Heating Only (?)	Similar physics to hot active regions?

*Theoretical nanoflares: Parker impulsive energy release †Observed nanoflares: Small EUV brightens energy about 10²⁴-10²⁷ erg Hannah – CL Workshop 6, Belgium, June 2013

Hannah – CL Workshop 6, Belgium, June 2013

Flare Frequency Distributions

- More frequent to smaller
- Tricky comparison
 - Different phenomena
 - Different data sets/analysis
- Power-law index $\alpha = 2$?
 - Hudson 1991
 - Low energy cut-off to each population more important?
- Need high sensitivity observations to cover:
 - AR micro to mino (to nano?)
 - AR micro to QS "nano"

HXR Microflares to Mino/Nanoflares?

- Non-thermal to thermal properties below current limits
 - GOES 1-8Å to RHESSI non-thermal flux (12keV) & peak energy
 - Caveats: Flux via fitted power-law model & CTTM energy

Hannah - CL Workshop 6, Belgium, June 2013

Recent SXR/HXR observations

Hannah - CL Workshop 6, Belgium, June 2013

Coronas-Photon/SphinX

- SXR Spectrophotometer
 20-Feb to 28-Nov 2009
 1 15 keV (0.4 keV)
- Solar Min/Quiet Sun
 - Thermal emission
 - 1.7MK, 4x10⁴⁷ cm⁻³
 - 1.9 MK, 1.1x10⁴⁸cm⁻³
 - Sylwester et al. 2012
- Active region flares
 Variability < A-level
 - S (small) and Q (quiet)
 - Gburek et al. 2011

Hannah - CL Workshop 6, Belgium, June 2013

Gburek et al. 2011

Coronas-Photon/SphinX AR Spectrum

- Integrated spectrum of nonflaring active regions
 Miceli et al. 2012
- Thermal component and
 Another thermal component?
 - Non-thermal component?
- Not clear evidence for nanoflares
 - Most likely micro/minoflare
 - Plus can be other HXR emission
 - More on this later

Miceli et al. 2012

RHESSI Non-Flaring Observations

- RHESSI fantastic for flares X through to A-Class
 But need different analysis techniques for fainter emission
- Long integrations & temporal chopping of solar "signal"
 - Day/Night terminator
 - Non-flaring active regions
 - McTiernan 2009
 - Off-pointing/Fan beam modulation
 - Quiet Sun & Non-flaring active regions
 - Hannah et al. (2007a,2007b, 2010)

NASA'S RHE

RHESSI Non-flaring Active Regions

- Use the day/night terminator
 - ± 5 minutes
 - No flares/spikes
 - Isothermal fit to spectrum
 - Background subtracted
 - 3 to 30 keV (or max E 3σ)
- Showing 28 day average
 6-8 MK
 - 10⁴⁶ 10⁴⁷ cm⁻³
- Minoflares the likely source?

McTiernan 2009

RHESSI Quiet Sun Limits

- From times with no active regions & GOES < 10⁻⁸ Wm⁻²
- Off-point from disk centre
 - Get strong time modulation
 - Peaks twice per rotation
 - Predictable location given pointing and source location
 - Max mod: offset 0.4° 1°
- No signal
 - Accumulate many QS times to produce upper limits
 - July 2005 to Aug 2009

Constrain Parameter Space

<u>Thermal</u>

- Max EM for each T₀ consistent with limits
- nkT=coronal heating

10 10.00 RHESSI (11.9 days) Max Low Energy Cut-off, E_c [keV] δ=5, E_c=0.32 keV [s⁻¹ cm⁻² keV⁻¹] 10⁻² δ=6, E_c=0.81 keV δ=7, E_=1.24 keV 1.00 10⁻³ Flux 2.5kT(1 MK) Photon F 0.10 **CTTM** suspect as not 10-4 cold relative to beam: 2.5kT (Emslie 2003) 10-5 0.01 100 10 1 10 4 6 8 Energy [keV] Power Law Index. δ

Non-Thermal

- Max low energy cut-off for each δ consistent with limits
- CTTM=coronal heating

P=9x10²⁷ erg s⁻¹ (Withbroe and Noyes 1977)

Hannah et al. 2010

Hannah et al. 2010

Hannah - CL Workshop 6, Belgium, June 2013

Future HXR Observations

Hannah – CL Workshop 6, Belgium, June 2013

Future HXR Observations

- Need higher sensitivity imaging spectroscopy than RHESSI to detect the smaller events
 - Need imaging to pin point source
 - Need spectroscopy to determine thermal/non-thermal
- Indirect imagers Grids/collimators
 - Solar Orbiter/STIX
- Direct imagers Focusing optics
 - Technology now practical/cost effective
 - FOXSI / HEROES / Super-HERO (2012 2014 +)
 - NuSTAR (solar 2014 +)

Wolter Mirrors

ESA's Solar Orbiter/STIX

- Spectrometer/Telescope for Imaging X-rays
 - Krucker (PI)
 - Provides crucial link between remote and in-situ instruments
- Although an indirect imager still more sensitive than RHESSI (x15)
 - Closer to Sun + Lower background
 - But still low dynamic range
- Specification
 - CZT: 4-150 keV (1-15 keV res)
 - Grids/Collimators: 7" of full Sun

STIX CZT Detector x 32

FOXSI Sounding Rocket

- Focusing Optics X-ray Solar Imager
 - Krucker (PI), Glesener [UCB] & Christe [GSFC]
 - Grazing-incident replicated optics
 - Flown on HERO Balloon, Ramsey et al. 2002 [MSFC]
 - Double-sided Si strip detectors
 - Developed for Astro-H, Takahashi [JAXA/ISAS]
- Specifications:
 - Energy: 4-15 keV (0.5 keV)
 - Spatial: FOV 16'x16'
 - 10" FWHM
 - Effective Area: 3 x RHESSI
 - Dynamic Range: 10 x RHESSI

FOXSI Launch: 02-Nov-2012

• 6.5 min observation interval

Courtesy of L. Glesener

Hannah – CL Workshop 6, Belgium, June 2013

FOXSI Microflare: B4

• FOXSI image free of RHESSI CLEAN artefacts

Courtesy of L. Glesener & S. Christe

Hannah - CL Workshop 6, Belgium, June 2013

FOXSI Non-flaring AR target

- 90s of data gives 4.6σ detection of HXR from the disk
- Under study: Not noise and not localized to AR
 - If real, difficult to say if thermal or non-thermal

FOXSI Future

- FOXSI 2nd flight (late 2014)
 - Upgrade detectors (CdTe)
 - More inner optics
 - Improved high energy response
- HEROES Balloon (Sep 2013)
 - High Energy Replicated Optics to Explore the Sun
 - Gaskin (MSFC) & Christe (GSFC)
 - − Similar optics but 6m focal length → 60 keV
- Super-HERO Antartica Balloon (proposed)
 - Couple weeks of observations
 - Upgrade to CdTe HEXITEC detectors

NASA's NuSTAR

- Nuclear Spectroscopic Telescope Array
 - PI: Fiona Harrison (Caltech)
 - Launched June 13, 2012
 - 2 grazing incidence telescopes
 - Energy: 3-79 keV (0.4 -0.9V)
 - Spatial: 13' x 13' (FWHM: 18")
 - 200x more sensitive than RHESSI
 - 10x FOXSI

Harrison et al. 2013

• Astrophysics mission so main targets so far are non-solar

NASA/JPL-Caltech/DSS.

NuSTAR Solar Observations

- Solar observations part of the base line mission
 - Expecting 3 weeks in 2014
 - Minimum observable flare: about 0.01 A-Class (10⁻¹⁰ Wm⁻²)
 - Maximum observable flare: <B-Class
- Solar Working group chaired by David Smith (UCSC)
 - Grefenstette, Hudson, Glesener, Hurford, Krucker, Marsh, Mewaldt, Pivovaroff, Vogel, White, Hannah (Collaborator)
- Early target: HXR "nanoflares" signatures in AR & QS
 - Existence;
 - Relationship to microflares;
 - Extension of flare distribution etc.
- Testable model parameters?
 - Suggestions welcome.....

Summary & Future

- Smallest HXR bursts are active region microflares
 10,000s of examples with RHESSI
- Relationship to smaller events in active regions unclear
 - Micro \rightarrow "Mino" \rightarrow "Nano" ?
 - Relationship AR to QS events more speculative ?
- HXR focusing optics observations within next 12/18 months
 Targeting HXR emission from non-flaring AR and QS
- Dedicated solar mission (Super FOXSI ?)
 - 1-80 keV + <10" + x100 RHESSI sensitivity
 - Great for flares/CMEs/jets and "nanoflares"

