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Motivation
We present a method for the determination of the cross-field density structuring
of coronal waveguides using the damping of their transverse oscillations

Relevant for MHD seismology

- to infer physical parameters that cannot be directly measured

Relevant for MHD wave heating

      Cross-field density structuring determines:

- time/spatial scales for resonant damping of standing/propagating transverse 
  waves
- how fast energy is transferred to small length scales
- Onset of dissipative effects
- Energy carried by the wave
- Fraction of the energy that can be converted into heat



Movies by J. Terradas

Non-uniform tube Damping

- Smooth density transition at boundary
- Transverse oscillation
- Radial and azimuthal velocity components
- Damping / energy transfer
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Resonant wave damping

Black: transverse velocity component

Orange: azimuthal velocity component

Relevant parameters: ⇣ l/R

Essential requirement:  non-uniform transverse profile of the Alfvén frequency  
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How the radial profile looks like for di↵erent values of l/R?

Sinusoidal non-uniform profile (Ruderman & Roberts 2002)

Relevant parameters

density contrast

transverse
inhomogeneity 
length scale

When does resonant damping occur

Pressure-less plasma

Non-uniform density

⇣ =
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Phase mixing

Energy transferred to small length-
scales can be dissipated 

Enhanced viscous and resistive 
dissipation

Heating at tube boundary

Terradas et al. (2006)

LPM =
2⇡

d!A
dr t

Black: transverse velocity component

Orange: azimuthal velocity component

Energy Transfer and Phase-Mixing of Alfvén Waves
Heyvaerts & Priest (1983);  Steinolfson (1985); Parker (1991);  Hood et al. (1997,2002); Nakariakov et al. (1997); 
De Moortel et al. (1999,2000); Ofman & Aschwanden (2002); McLaughlin et al. (2011)



l/R=1l/R=0.5

Thick layers > faster damping, but slower small-scale creation

Movies by
 J. Terradas

At a given point dissipation becomes important



Relevant time and spatial scales for 
wave energy transfer - phase mixing - resistive diffusion 

Resonant damping

Resistive dissipation important when

Phase-mixing > creation of small scales

This scale is reached in a time

Rm = 1012 Rm = 104

 NO heating 
during oscillation

see also Lee & Roberts (1986); Davila (1987)
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 oscillation
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Attempts to determine the relevant parameters
Damping times consistent with observations
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Application to observations of coronal loop oscillations

⌥ Analysis of observations

Schrijver, C.J., Aschwanden, M.J., and Title, A. 2002

Aschwanden, M.J., De Pontieu, B., Schijver, C.J., & Title, A. 2002

⌥ Selected 11 of these loops from di↵erent flare or filament eruption events

⌥ Estimate ⇣ = ⇢i
⇢e

= 10 and calculate inhomogeneity length scale from observed
periods and damping times !

No. L[m] R[m] R/L P [s] ⌧
decay

[s] l/R
1 1.68e8 3.60e6 2.1e-2 261 870 0.16
2 7.20e7 3.35e6 4.7e-2 265 300 0.44
3 1.74e8 4.15e6 2.4e-2 316 500 0.31
4 2.04e8 3.95e6 1.9e-2 277 400 0.34
5 1.62e8 3.65e6 2.3e-2 272 849 0.16
6 3.90e8 8.40e6 2.2e-2 522 1200 0.22
7 2.58e8 3.50e6 1.4e-2 435 600 0.36
8 1.66e8 3.15e6 1.9e-2 143 200 0.35
9 4.06e8 4.60e6 1.1e-2 423 800 0.26
10 1.92e8 3.45e6 1.8e-2 185 200 0.46
11 1.46e8 7.90e6 5.4e-2 396 400 0.49

⌥ Damping of coronal loop oscillations can be explained as damping of quasi-
mode kink oscillations due to resonant absorption!

⌥ OK, but the non-uniform boundaries are not thin! (Goossens et al. 2002)

Goossens et al. (2002) ⇣ = 10
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Curves of constant damping rate (P/⌧d) in the (⇣, l/R)-plane

⌥ Damped loops are either highly inhomogeneous low contrast loops or
less inhomogeneous high contrast loops

⌥ High (low) contrast �! small (large) range in l/R

⌥ Equilibria for which P > ⌧
d

: problem from observational point of view

⌥ Observational values for the damping rate only give infinite combina-
tions of ⇣ and l/R

- highly inhomogeneous low contrast loops                                   

- less inhomogeneous high contrast loops

Damped loops are either 

 Observational values for the damping rate

 only give infinite combinations of ζ and l/R

Arregui et al. (2007) - standing waves Goossens et al. (2012) 
propagating waves



Spatial damping of propagating kink waves
Terradas Goossens & Verth (2010) Pascoe, Wright, De Moortel (2010)see also Soler et al. (2011a,b)

For propagating transverse kink waves resonant absorption produces spatial damping



Two damping regimes!– 12 –

Fig. 1.— Transverse velocity component as a function of height at the axis of the tube for prop-
agating kink waves for a numerical simulation with ⇣ = 1.5 and l/R = 0.4 (case 3 in Table 2).
On the top is the general spatial damping profile given by the solid line. The transition between
Gaussian and exponential damping is given by the vertical dotted line. On the bottom, the general
profile is split into its two components; Gaussian (dot-dash) and exponential (dashed).

Pascoe et al. (2010, 2011, 2012, 2013) Hood et al. (2013) Ruderman & Terradas (2013)

The decay of resonantly damped kink oscillations shows 2 distinct regimes:         
Initial Gaussian decay + subsequent exponential damping

Gaussian damping

Exponential damping

Regime change at location

– 4 –

Because of resonant absorption, spatial damping occurs, and the transverse velocity amplitude
decays with an exponential profile of the form exp(�z/Ld). Under the thin tube and thin boundary
(l/R << 1) approximation, an expression for the damping length, Ld, as a function of the relevant
physical parameters can be obtained. In units of the wavelength this expression is (see Terradas
et al. 2010)
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The first factor is due to the assumed linear density profile at the non-uniform layer. Note that the
right hand-side of this expression is identical to the one for the damping time over the period for
standing kink waves. The reason is that resonant absorption does not make any distinction with
respect to the standing or propagating character of the wave.

The exponential profile obtained for standing (e.g., Ruderman & Roberts 2002; Goossens
et al. 2002) and propagating (e.g., Terradas et al. 2010) kink waves describes the asymptotic state
of the damping behavior, i.e. at large times or distances. Pascoe et al. (2012) demonstrated with
numerical simulations that the initial damping stage can be described by a Gaussian profile of the
form exp(�z2/L2

g), with Lg the Gaussian damping length scale. Hood et al. (2013) considered the
problem analytically and produced an expression for the full nonlinear spatial damping profile,
which can be approximated as Gaussian for low heights and exponential at large heights. Instead,
Pascoe et al. (2013) proposed a general spatial damping profile composed of a Gaussian damping
profile at low heights and the usual exponential profile at large heights. An example of the spatial
dependence of the velocity amplitude from numerical simulations and the double profile fitting for
such a general damping profile is displayed in Figure 1. The accuracy of this approximate damping
profile was demonstrated by the parametric study performed by Pascoe et al. (2013). This study
shows that the Gaussian damping length scale can be well described by the expression

Lg

�
=

 
2
⇡

! ✓R
l

◆1/2  
⇣ + 1
⇣ � 1

!
. (3)

This equation expresses the Gaussian damping length as a function of the same two parameters
that determine the exponential damping length. This means that the observational identification
of two damping regimes and the measurement of their associated length scales would provide
us with additional information without the inclusion of new model parameters. The height, h, at
which the damping regime changes from Gaussian to exponential is given by (see Pascoe et al.
2013)

h =
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Numerical simulations Theory: propagating waves Theory: standing waves



Bayesian inference with propagating waves
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Fig. 1.— Transverse velocity component as a function of height at the axis of the tube for prop-
agating kink waves for a numerical simulation with ⇣ = 1.5 and l/R = 0.4 (case 3 in Table 2).
On the top is the general spatial damping profile given by the solid line. The transition between
Gaussian and exponential damping is given by the vertical dotted line. On the bottom, the general
profile is split into its two components; Gaussian (dot-dash) and exponential (dashed).

Arregui,  Asensio Ramos, & Pascoe (2013, ApJL 769, L34)

Inversion of density contrast and transverse inhomogeneity length scale using 
Gaussian damping length and height of change of damping regime as data

Generate synthetic data using analytical forward model

Parameter space
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Likelihood + uniform priors for contrast and length scale
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4. Inversion Results

We have first evaluated the performance of our inversion scheme by making the inference
under controlled conditions. We generated predictions for the length scales Lg and h for di↵erent
combinations of the equilibrium parameters, ⇣ = 1.5, 2, 3, 4 and l/R = 0.05, 0.15, 0.2, 0.4, using
Equations (3) and (4). Those synthetic data where treated as observed data in the Bayesian inver-
sion. A 10% uncertainty on the data was considered and the posterior distributions for ⇣ and l/R
were computed, using the likelihood function (7) and the uniform priors. Once the posteriors were
known, the median and the variances associated to the 68% confidence level were calculated. Ta-
ble 1 displays the inversion results for some parameter combinations. In all the cases, the inversion
scheme was able to correctly infer the values for the physical parameters. The larger the density
contrast, the shorter the two length-scales Lg and h are. This increases the errors in the in-
ferred density contrast, while errors in l/R are not a↵ected that much. For the combinations
with the largest ⇣ = 10 and l/R = 0.5, 1, 1.5, Lg and h are comparable to the wavelength. This
would make very problematic the observational identification of the two damping regimes.

Then, simulations of transverse kink wave propagation in a magnetic flux tube were performed
using a numerical code (see Pascoe et al. 2013, for details). A Lax-Wendro↵ code is used to solve
the linear MHD equations in cylindrical coordinates. The lower boundary is driven harmonically
with velocity perturbations corresponding to the loop footprint moving back and forth about its
equilibrium. The simulation ends after 10 periods of oscillation and the spatial damping profile
is investigated by considering the radial velocity component, vr as a function of z at the centre of
the loop (Figure 1). From the behavior of the amplitude of the excited kink waves at di↵erent
heights the damping profile was fitted and values for Lg and h obtained. Using those fitted values
as observed data, we repeated the inversion procedure. For the sake of comparison, parameter
spaces that overlap with those in Table 1 were considered. Figure 2 displays an example of the
marginal posterior distributions and the joint probability distribution for ⇣ and l/R. For both pa-
rameters, well defined probability distributions are obtained. For each parameter, the median of the
marginal posterior and errors given at the 68% credible interval are used to compute the estimates
given in Table 2. This Table shows the values for the physical parameters used in the simulations,
the fitted length scales, and the inferred physical parameters. Numerical and analytical forward
models give similar results. This issue is discussed in detail by Pascoe et al. (2013) (see their
figures 8, 9, and 10). Our Bayesian inference technique properly returns the physical parameters
of interest. As with synthetic data in Table 1, large density contrast values tend to produce
larger errors in their determination by inversion. The main problem lies in obtaining the
parameters Lg, Ld, and h from the data, and specifically in determining h accurately, which
determines the accuracy of the density estimate.

The general spatial damping profile remains an accurate description of the damping

– 6 –

the full posterior with respect to the rest of parameters

p(✓i|d) =
Z

p(✓|d)d✓1 . . . d✓i�1d✓i+1 . . . d✓N . (6)

The result provides us with all the information for model parameter ✓i available in the priors
and the data. This method also enables us to correctly propagate uncertainties from data to
inferred parameters.

We next specify the likelihood function and the priors. In what follows we assume the
observed data are given by d = (Lg, h), where both observed length-scales are normalized to
the wavelength. The unknowns are gathered in the vector ✓=(⇣, l/R). Under the assumption
that observations are corrupted with Gaussian noise and they are statistically independent, the
likelihood can be expressed as

p(d|✓) =
⇣
2⇡�Lg�h

⌘�1
exp

8>>><
>>>:

h
Lg � Lsyn

g (✓)
i2

2�2
Lg

+
[h � hsyn(✓)]2

2�2
h

9>>>=
>>>;
, (7)

with Lsyn
g (✓) and hsyn(✓) given by Equations (3) and (4). Likewise, �2

Lg
and �2

h are the variances
associated to the Gaussian damping length and the height h, respectively.

The priors indicate our level of knowledge (ignorance) before considering the observed data.
We have adopted uniform prior distributions for both unknowns over given ranges, so that we can
write

p(✓i) =
1

✓max
i � ✓min

i

for ✓min
i  ✓  ✓max

i , (8)

and zero otherwise. For the minimum and maximum values the intervals ⇣ 2 [1, 20] and l/R 2
[0, 2] have been taken. This choice of priors expresses our belief that the unknown parameters are
constrained to those ranges, with all combinations being equally probable. We have verified that
our posteriors are insensitive to prior changes. This means that they are dominated by the
information contained in the data, that overwhelms the prior information.

The posterior is evaluated for di↵erent combinations of parameters using Bayes’ theorem.
Given that the number of model parameters is two, the computation of the marginal posteriors
using Eq. (6) can be safely done using a numerical quadrature. For this purpose, we have computed
the 1-dimensional integrals using an adaptive Gauss-Kronrod quadrature, which gives very good
precision.
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Use Bayes’ rule and marginalise

The Astrophysical Journal Letters, 765:L23 (5pp), 2013 March 1 Arregui, Asensio Ramos, & Dı́az

Figure 1. (a) Posterior distributions for η, under the density stratification model, for two values of the period ratio. (b) Posterior distributions for the magnetic tube
expansion, Γ, under the magnetic expansion model, for two values of the period ratio. The measured period ratio and the inferred median of the distribution, with
uncertainties given at the 68% credible interval are (a) r = 0.91 ± 0.04, η = 1.26+0.65

−0.59; r = 0.79 ± 0.03, η = 3.39+0.72
−0.64 and (b) r = 1.07 ± 0.04, Γ = 1.20+0.10

−0.12;
r = 1.38±0.04, Γ = 1.87+0.07

−0.07. The improved errors on r in the measurements of Verwichte et al. (2004) have been taken from Van Doorsselaere et al. (2007). Similar
errors are assigned to the mean values in the measurements by De Moortel & Brady (2007).

Both longitudinal stratification and magnetic tube expansion
have forward models that relate one observed quantity, the
period ratio P1/2P2, to one physical quantity to be inferred,
η or Γ.

3. BAYESIAN PARAMETER INFERENCE

To perform the inference using existing estimates for the
period ratio, we employ Bayes’ theorem (Bayes & Price 1763)

p(θ |D,M) = p(D|θ ,M)p(θ |M)∫
dθp(D|θ ,M)p(θ |M)

, (3)

which gives the solution to the inverse problem in terms of
the posterior probability distribution, p(θ |D,M), that describes
how probability is distributed among the possible values of the
unknown parameter, θ , given the data D and the assumed model
M. The function p(D|θ,M) is the likelihood of obtaining a
data realization actually observed as a function of the parameter
vector and provides a measure of how well the data are predicted
by the model. The prior probability p(θ |M) encodes any prior
information we might have on the model parameters without
taking into account the observed data. The denominator is the
evidence, an integral of the likelihood over the prior distribution.
This quantity plays no role in parameter inference, but will
become central in the model comparison described in Section 4.

3.1. Longitudinally Stratified Loops

For longitudinally stratified loops, model M1, the forward
problem, is given in Equation (1). To evaluate the likelihood,
we assume that the model is true. Then, the period ratio mea-
surement (r) will differ from the prediction (r1) because of mea-
surement uncertainties (e), so that r = r1 ± e. The probability
of obtaining the measured value is equal to the probability of
the error. Assuming Gaussian errors, the likelihood for model
M1 is then expressed in the following manner

p(r|η,M1) = 1√
2πσ

exp
[
− (r − r1)2

2σ 2

]
, (4)

with σ 2 the variance associated to the observed period ratio.
In the following we assign observed period ratio errors to the
standard deviation σ .

The prior indicates our level of knowledge (ignorance) before
considering the observed data. We have adopted a uniform prior
distribution for the unknown, η, over a given range, so that we
can write

p(η|M1) = 1
ηmax − ηmin

for ηmin ! η ! ηmax, (5)

and zero otherwise. We only consider loops with density
decreasing with height. We know from observations that
very large coronal loops with the apex height above
several atmospheric scale heights exist, so we consider the range
η ∈ [0, 8] in the prior above.

Parameter inference is next performed using Bayes’
theorem (3). We use period ratio measurements reported in
observations by Verwichte et al. (2004). We must note that
unambiguous identification of measured periods with particular
overtones is a difficult task. Early observations were limited to
the measurement of different periodicities at a single point with-
out spatial information (Verwichte et al. 2004). Even in the case
in which information at different cuts along the loops is avail-
able (De Moortel & Brady 2007), it is unclear how one should
assign those periods to theoretical overtones. As our Letter
aims at providing a method to perform parameter inference
and model comparison, we have considered period ratio values
discussed in the review by Andries et al. (2009), noting that the
reliability of the results is closely related to that of the adopted
assumptions and theoretical interpretations.

Figure 1(a) shows posterior probability distributions for η
computed using Equation (3) with likelihood and prior given
by Equations (4) and (5) for two period ratio measurements
by Verwichte et al. (2004). Well constrained distributions are
obtained. For the measured period ratios r ∼ 0.79 and r ∼ 0.91,
the inversion leads to density scale heights of H = 21 Mm and
H = 56 Mm, respectively, for a loop with a height at the apex
of L/π = 70 Mm.

3.2. Expanding Magnetic Loops

For expanding loops, model M2, the forward problem is given
in Equation (2). To evaluate the likelihood, we follow the same
procedure as above, which leads to

p(r|Γ,M2) = 1√
2πσ

exp
[
− (r − r2)2

2σ 2

]
. (6)
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the full posterior with respect to the rest of parameters

p(✓i|d) =
Z

p(✓|d)d✓1 . . . d✓i�1d✓i+1 . . . d✓N . (6)

The result provides us with all the information for model parameter ✓i available in the priors
and the data. This method also enables us to correctly propagate uncertainties from data to
inferred parameters.

We next specify the likelihood function and the priors. In what follows we assume the
observed data are given by d = (Lg, h), where both observed length-scales are normalized to
the wavelength. The unknowns are gathered in the vector ✓=(⇣, l/R). Under the assumption
that observations are corrupted with Gaussian noise and they are statistically independent, the
likelihood can be expressed as

p(d|✓) =
⇣
2⇡�Lg�h

⌘�1
exp

8>>><
>>>:

h
Lg � Lsyn

g (✓)
i2

2�2
Lg

+
[h � hsyn(✓)]2

2�2
h

9>>>=
>>>;
, (7)

with Lsyn
g (✓) and hsyn(✓) given by Equations (3) and (4). Likewise, �2

Lg
and �2

h are the variances
associated to the Gaussian damping length and the height h, respectively.

The priors indicate our level of knowledge (ignorance) before considering the observed data.
We have adopted uniform prior distributions for both unknowns over given ranges, so that we can
write

p(✓i) =
1

✓max
i � ✓min

i

for ✓min
i  ✓  ✓max

i , (8)

and zero otherwise. For the minimum and maximum values the intervals ⇣ 2 [1, 20] and l/R 2
[0, 2] have been taken. This choice of priors expresses our belief that the unknown parameters are
constrained to those ranges, with all combinations being equally probable. We have verified that
our posteriors are insensitive to prior changes. This means that they are dominated by the
information contained in the data, that overwhelms the prior information.

The posterior is evaluated for di↵erent combinations of parameters using Bayes’ theorem.
Given that the number of model parameters is two, the computation of the marginal posteriors
using Eq. (6) can be safely done using a numerical quadrature. For this purpose, we have computed
the 1-dimensional integrals using an adaptive Gauss-Kronrod quadrature, which gives very good
precision.
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Fig. 2.— One-dimensional marginalized posterior distributions for the density contrast (a) and the
transverse inhomogeneity length scale (b) corresponding to the inversion of a spatially damped
transverse oscillation with Lg/� = 4.986 and h/� = 4.909. Uncertainties of 10% have been used.
(c) Joint two-dimensional posterior distribution. The light and dark grey shaded regions cover the
95% and 68% credible regions. The symbol indicates the estimate.

– 13 –

Fig. 2.— One-dimensional marginalized posterior distributions for the density contrast (a) and the
transverse inhomogeneity length scale (b) corresponding to the inversion of a spatially damped
transverse oscillation with Lg/� = 4.986 and h/� = 4.909. Uncertainties of 10% have been used.
(c) Joint two-dimensional posterior distribution. The light and dark grey shaded regions cover the
95% and 68% credible regions. The symbol indicates the estimate.

– 13 –
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transverse inhomogeneity length scale (b) corresponding to the inversion of a spatially damped
transverse oscillation with Lg/� = 4.986 and h/� = 4.909. Uncertainties of 10% have been used.
(c) Joint two-dimensional posterior distribution. The light and dark grey shaded regions cover the
95% and 68% credible regions. The symbol indicates the estimate.

Inversion result - example

The existence of two damping regimes 
enables us to constrain the cross-field 
density structuring
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Table 1. Inversion of Synthetic Data Using the Analytical Forward Model

Synthetic Parameters Synthetic Data Inversion Results

⇣ l/R Lg/� h/� ⇣ l/R

1.5 0.05 14.2 5.0 1.51+0.08
�0.06 0.05+0.02

�0.01
1.5 0.15 8.2 5.0 1.50+0.07

�0.06 0.16+0.05
�0.04

1.5 0.2 7.1 5.0 1.51+0.07
�0.06 0.21+0.06

�0.05
1.5 0.4 5.0 5.0 1.50+0.07

�0.05 0.44+0.13
�0.11

3 0.05 5.7 2.0 3.11+0.59
�0.38 0.05+0.02

�0.01
3 0.15 3.3 2.0 3.09+0.61

�0.40 0.15+0.05
�0.04

3 0.2 2.9 2.0 3.13+0.58
�0.41 0.19+0.07

�0.05
3 0.4 2.0 2.0 3.10+0.60

�0.41 0.42+0.15
�0.12

4 0.05 4.8 1.7 4.31+1.52
�0.79 0.05+0.02

�0.01
4 0.15 2.7 1.7 4.39+1.47

�0.85 0.15+0.05
�0.04

4 0.2 2.4 1.7 4.38+1.69
�0.85 0.19+0.08

�0.06
4 0.4 1.7 1.7 4.38+1.55

�0.86 0.38+0.14
�0.11

10 0.5 1.1 1.2 11.54+4.58
�3.88 0.51+0.16

�0.11
10 1.0 0.8 1.2 11.55+4.69

�3.81 1.02+0.29
�0.22

10 1.5 0.6 1.2 12.29+4.32
�3.89 1.45+0.29

�0.28
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Table 2. Inversion of Numerical Data From Simulations

Simulation Parameters Fitted Data Inversion Results

⇣ l/R Lg/� h/� ⇣ l/R

1.5 0.05 11.5 3.8 1.73+0.12
�0.09 0.05+0.02

�0.01
1.5 0.15 7.9 4.6 1.56+0.08

�0.07 0.15+0.05
�0.04

1.5 0.2 7.0 4.8 1.53+0.08
�0.06 0.21+0.07

�0.05
1.5 0.4 5.0 4.9 1.52+0.07

�0.06 0.39+0.09
�0.08

3 0.05 5.5 2.1 2.88+0.46
�0.33 0.06+0.02

�0.02
3 0.15 3.5 2.2 2.74+0.44

�0.32 0.16+0.06
�0.04

3 0.2 3.1 2.2 2.74+0.41
�0.30 0.21+0.07

�0.05
3 0.4 2.1 2.0 3.09+0.57

�0.40 0.38+0.13
�0.11

4 0.05 4.9 1.7 4.17+1.32
�0.74 0.05+0.02

�0.01
4 0.15 3.1 1.9 3.19+0.64

�0.42 0.16+0.06
�0.05

4 0.2 2.7 1.9 3.33+0.74
�0.43 0.21+0.07

�0.06
4 0.4 2.3 2.2 2.73+0.43

�0.29 0.38+0.12
�0.10

Inversion technique correctly recovers input parameters
Analytical forward model accurate enough when compared to simulation inversions
Large density contrasts represent a challenge from observational point of view

Inversion with analytical forward model Inversion with numerical simulation



• The determination of the cross-field density structuring in coronal loops is crucial 
to assess and quantify the role of MHD waves in heating processes

• We have shown how the existence of two damping regimes for the spatial damping 
of MHD kink oscillations can be used to determine the density contrast and the 
transverse inhomogeneity length scale

• Inference is performed in the Bayesian framework, which ensures the problem is 
solved consistently and with correctly propagated uncertainty

• The observational identification of two damping regimes would also constitute 
strong support for resonant absorption as a means to damp and contribute to the 
heating of loops

Summary


