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We present the first results on the analysis of spacecraft
charging with the implicit particle-in-cell code iPic3D, de-
signed for running on massively parallel supercomputers
[Deca et al. 2013]. Secondly, five spacecraft-plasma mod-
els, including iPic3D, are used to simulate the interaction
of the SPP satellite with the space environment under rep-
resentative solar wind conditions near perihelion [Marchand
et al. 2013, submitted to P&SS]. Although the numerical ap-
proaches are rather different, good agreement is found, rais-
ing the level of confidence in the codes to predict and evalu-
ate the complex plasma environment around spacecraft.

Figure courtesy: NASA

SOLAR PROBE PLUS (SPP) will study the Solar
corona as it extends out into space, the last region
of the solar system to be visited by a spacecraft.
● 8.5 solar radii above the Sun’s surface.
● In-situ measurements of the region where some of

the most hazardous solar energetic particles are
energized.

● Improve our ability to characterize and forecast the
radiation environment in which future space ex-
plorers will work and live.

iPic3D for spacecraft charging

● Fully kinetic, fully parallelized
PIC code based on the implicit
moment method [Markidis et al.
2010].

● Electrostatic Poisson solver with
immersed boundary method:

∇ ⋅ ε∇φ = −ρ,

with ε = 105 inside the space-
craft and ε = 0 elsewhere for a
perfect conducting body.

● Easy implementation of com-
plex spacecraft geometries.

● Open boundary conditions.
● Photoelectron and secondary

electron emission and
● static background magnetic field

possible.

Code verification: CubeSat (1m×1m×1m)

Five cases considered and compared with Ptetra, under solar wind conditions
applicable to SPP [Deca et al. 2013].

Case 1 2 3 4 5

Flow X X X X X
Photoemission X X X
Sec. elec. em. X X X
background B X

φSC,iPic3D (V) -228.2 -32.9 -17.1 -16.2 -21.5
φSC,PTetra (V) -226.0 -33.6 -16.5 -15.4 -20.7

Saturated emission regime

When the photoelectron and/or secondary electron emission yield is strong
enough to create a potential barrier higher than the average energy of the
emitted particles, emitting more particles has little effect on the spacecraft
charge/floating potential.

Cross-comparison of model predictions applied to SPP near perihelion

Simulation results are compared with increasing levels of
complexity in the physics of interaction between the solar en-
vironment and SPP. We show the most advanced case.

Five models, five different numerical approaches

● EMSES (EM, expl., PIC) [Miyake&Usui 2009].
● iPic3D (ES, impl., PIC) [Deca et al. 2013].
● LASP (ES, Time. Stat., hybrid) [Ergun et al. 2010].
● PTetra (ES, expl., PIC) [Marchand 2012].
● SPIS (ES, expl., PIC) [Roussel et al. 2008].

Space environment and adopted simulation parameters.

ne = ni 7 × 109 m−3 orbital speed 195 km/s
ions 100%H+ Jph 16 mA/m2

Te 85 eV Tph 3 eV
Ti 82 eV secondary em. model dependent
B 2µT radial Tse 2 eV

vsw 300 km/s radial particle albedo 5% (SPIS, LASP)
0% (other models)

ISSI Team 226: R. Marchand, Y. Miyake, J. Deca, J. C. Matéo-Vélez,
R. E. Ergun, V. Génot, S. Guillemant, G. Lapenta, S. Markidis, A.
Sturner and H. Usui.

● SPP will operate in an emission satu-
rated regime, surrounded by a dense
negative low energy (2-3 eV) elec-
tron sheath which reflects most of the
electrons emitted from the surface.

● A major difficulty in making predic-
tions stems from the uncertainty in
the parametrization of material prop-
erties in space.

Excellent agreement!

Excellent agreement between the models indicates a high level of skill for these
models to predict spacecraft-environment interactions.
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