Modeling the recovery phase of extreme geomagnetic storms 0 6

C. Cid, J. Palacios, E. Saiz, Y. Cerrato,

J. Aguado, A. Guerrero

Space Research Group - Space Weather, Universidad de Alcalá, Spain.

The models have also evolved

The models have also evolved -II

10th European Space Weather Week , Antwerp, November 2013

And new models need to be validated... in the extreme cases!

Event	Year	Month	Day	Observatory	H range	Geomagnetic
#					(nT)	latitude
1	1859	September	1-2	Bombay	1720	9.74
2	1921	May	13-16	Alibag	>700	9.46
3	1928	July	7	Alibag	780	9.45
4	1938	April	16	Alibag	530	9.37
5	1957	September	13	Alibag	580	9.29
6	1958	February	11	Alibag	660	9.29
7	1989	March	13	Kakioka	640	26.6

A selection of events from Tsurutani et al. [2003]

Analysing individual events

See poster by Palacios et al. in session S12

LDi works fine!

The events ready for checking

And the results

Problems: May 1921 event

More Problems: Carrington event

Double step: short interval fitted
High resolution of computed Dst (almost SYM-H)
Averaging to hourly resolution: Carrington Dst_{peak} = 685 nT

> Comparable to the 1989 March storm! (peak = 640 nT)

The final fitting results

Event	t_0	Dst _c	Δt	$ au_{ m h}$	Dst_0	r^2
#	(yyyy mm dd hh:mm)	min (nT)	(h)	(h)	(nT)	
1	1859 09 02 10:15 ^b	-1697	48	0.10 ± 0.02	-1600 ± 135	0.68
			1.47	0.14 ± 0.02	-1753±103	0.93
2	1921 05 15 05	-713°	48	7.27 ± 1.70	-646±73	0.51
			20	3.55 ± 0.34	-767±32	0.96
3	1928 07 08 10	-506	48	4.55 ± 0.45	-585±32	0.88
4	1938 04 16 10	-263	48	6.46 ± 0.65	-267±13	0.91
5	1957 09 13 10	-532	48	3.67 ± 0.30	-541±22	0.93
6	1958 02 11 11	-475	48	8.40 ± 0.90	-457±23	0.87
7	1989 03 14 00	-674	48	6.11±0.61	-688±34	0.88

Cid *et al.* [2013]

The final fitting results

Event	t_0	Dst _c	Δt	$ au_{ m h}$	Dst_0	<i>r</i> ²
#	(yyyy mm dd hh:mm)	min (nT)	(h)	(h)	(nT)	
1	1859 09 02 10:15 ^b	-1697	1.47	0.14 ± 0.02	-1753 ± 103	0.93
2	1921 05 15 05	-713°	20	3.55 ± 0.34	-767±32	0.96
3	1928 07 08 10	-506	48	4.55 ± 0.45	-585±32	0.88
4	1938 04 16 10	-263	48	6.46 ± 0.65	-267±13	0.91
5	1957 09 13 10	-532	48	3.67 ± 0.30	-541±22	0.93
6	1958 02 11 11	-475	48	8.40 ± 0.90	-457±23	0.87
7	1989 03 14 00	-674	48	6.11±0.61	-688±34	0.88

Cid et al. [2013]

Both parameters are still related... but not linearly!

 $\tau_h(h) = (21 \pm 3) \exp[(2.4 \pm 0.5) \times 10^{-3} Dst_0(nT)]$

Cid *et al.* [2013]

10th European Space Weather Week , Antwerp, November 2013

Conclusions

- The hyperbolic decay function is able to provide by a unique continuous function and with high accuracy the recovery phase of any storm
- Although the Carrington storm is still the most intense geomagnetic storm ever recorded, it is not as extreme as usually stated