

The 'ideal' collection of data sets for space weather forecasting

Devos A., Stegen K., Vansintjan R., West M.,

Mampaey B., Delouille V.

Royal Observatory of Belgium

Acknowledgements to colleague-forecasters (ROB, Belgium) and Deckmyn A. (RMI, Belgium) for discussion

How to improve space weather forecasting? 10 stages

<u>Stage</u>	<u>Terresterial weather</u> forecasting	<u>Stage</u>	<u>Terresterial weather</u> forecasting
1	Impact stage: prehistory	6	Modelling: 2 nd half 19 th century Still subjective
2	"Sky signs": e.g. approaching thunderstorms	7	Polar front theory
3	Instrument-based: 17 th century	8	Objective forecasting
4	Synoptic systems of storms	9	Numerical predictions
5	Telegraph: 1850s	10	Satellite and radar imagery Real-time storm tracking

How to improve space weather forecasting? 10 stages

<u>Stage</u>	Space weather forecasting	<u>Stage</u>	Space weather forecasting
1	Impact stage: disruptions telegraph mid 19 th century	6	First forecast rules: e.g. dynamics at active regions
2	Relation auroras, sunspots to disturbances	7	First forecast rules
3	Magnetometer	8	Operational objective forecast algorithms
4	Magnetic storms are global	9	Numerical predictions
5	Funding of forecast centers for radiocommunication	10	Real-time tracking of solar wind: attempt by STEREO/HI

How to improve space weather forecasting?

- Real-time observations
- More observational data
- Accurate numerical models

Issues with real-time observations

- Data gaps
 - LASCO/C2, STEREO A/B, SDO/AIA, ...
- Latencies
 - PROBA2, STEREO: up to 15h, LASCO/C2: several hours
- Anomalies
 - GOES, SDO
- Lack of in situ measurements
 - SOHO/CELIAS, ACE/SWEPAM and /MAG, WIND
 - STEREO/IMPACT A/B

Instruments for long term observations

<u>Category</u>	Current situation	Situation/suggestion for next decade(s)
Ground-based imager	GONG, BASS2000, KSO,	Better combine observations from different sites
Ground-based radiospectrometer	E-Calisto network, RSTN, Culgoora,	Realtime availability for space weather in standard format

Instruments for long term observations

Category	Current situation	Situation/suggestion for next decade(s)
Magnetic imager	SDO/HMI	SDO/HMI, new spacecraft?
X-ray radiometer	GOES/XRS, PROBA2/LYRA	GOES/XRS, PROBA2/LYRA?
EUV imager	SDO/AIA, PROBA2/SWAP	SDO/AIA, PROBA2/SWAP?
Coronagraph	SOHO/LASCO (STEREO A/B)	new spacecraft?, PROBA3/ASPIICS: not for SW
In situ instrument	ACE/SWEPAM & MAG, WIND, SOHO/CELIAS (STEREO IMPACT A/B)	DISCOVR? Solar Orbiter: not for SW
Heliospheric imager	STEREO/HI	new spacecraft?

Status of tools/initiatives for space weather forecasting (non-exhaustive)

• Solar event detection:

CACTus, SEEDS (CMEs), CorPITA (EIT, dimmings), SolarDemon (flares, EIT, dimmings), SoFast (flares),...

• CME:

derive speed and direction of propagation via geometric models (e.g. STEREO CAT, Thernisien model,...)

Community efforts:

Space Weather Scoreboard for CME Arrival, SW email lists

Status of numerical models

- Operational numerical models: strongest boost in performance
- Examples:
 - Flares: Automated Solar Activity Prediction (ASAP)
 - CMEs: ENLIL-WSA model, drag-based model
 - CME/Flares/SEP: MAG4

<u>Terresterial</u> <u>weather</u>	Applied to space weather
High resolution data	
More observations	
Tools and modelling	

<u>Terresterial weather</u>	Applied to space weather
High resolution data	 Solar wind measurements: successor of ACE? Exploit innovative, efficient technologies: solar sail (cfr NanoSail-D), CubeSat (cfr QB50), IPS High resolution (coronagraphic) imaging data

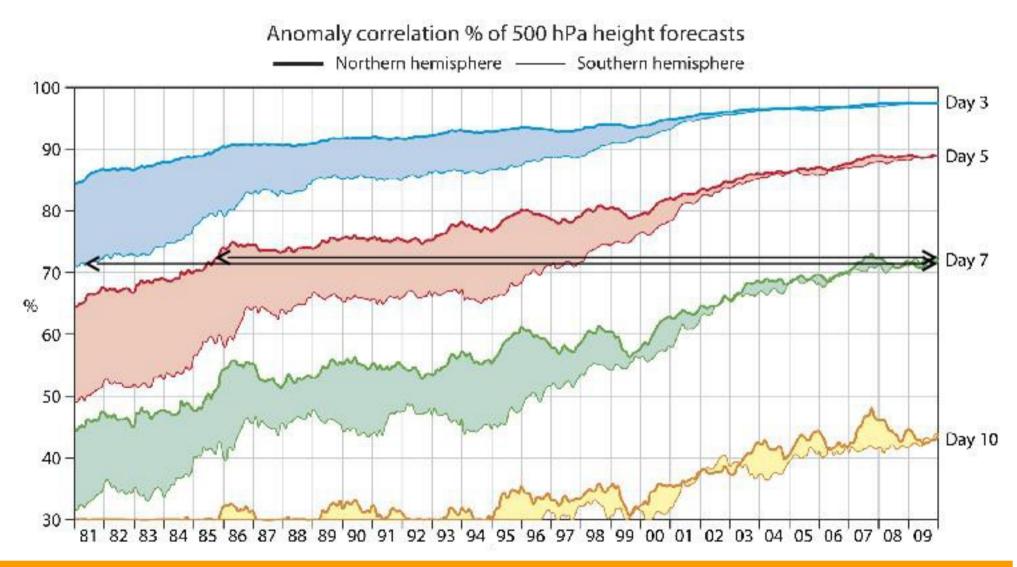
More observations

Tools and modelling

<u>Terresterial weather</u>	Applied to space weather
High resolution data	
More observations	 Small spacecraft for space weather
	 Continuous observations, sustainable missions
	 More and better coordinated ground- based observations around globe

Tools and modelling

Terresterial weather	Applied to space weather
High resolution data	
More observations	
Tools and modelling	 Data assimilation Ensemble modelling Constant evaluation and feedback Operational implementation and integration


Other key factors to stimulate evolutions in SW forecast

• **Data management**: combine data

Examples: helioviewer, latest event list (LMSAL), ...

- Make data more quickly available
- Redundancy
- Networking and intense collaboration between institutes
- Incorporate space weather at WMO (ISES)
- **Dissemination** and **teach** forecasting
- Attract potential users

To improve forecast performance: investment during several decades

ESWW10 - Session 3 - November 19 2013

Source: ECMWF