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Motivation

[Jackman et al., 2001]

Why are we interested in
precipitating particles?

Impacts:
ionization
chemical processes
electric conductivity

Measurement of
1 input (needs in-situ

particle
measurements)

2 effects (TEC: radars,
GPS or limp-sounding:
MIPAS)
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Outline

Outline
1 How do particle precipitation models work?
2 How precise are these models?

satellite data
model assumptions



How does an ionization model work?

Scheme
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ASSUMPTIONS AND LIMITATIONS IN MODELING ATMOSPHERIC
IONIZATION BY PRECIPITATING PARTICLES

WHICH PARTS OF IONIZATION MODELS AFFECTED BY UNCERTAINTIES? AND HOW MUCH?

ASSUMPTIONS AND LIMITATIONS IN
MODELING ATMOSPHERIC IONIZATION
BY PRECIPITATING PARTICLES
JAN MAIK WISSING AND MAY-BRITT KALLENRODE

MOTIVATION
We model atmospheric ionization by parti-
cles because they impact chemical processes
and change the electric conductivity.
But are ionization models reliable? Which
assumtions are used and are they realistic?
Which parts of the ionization modeling still
need improvements?

IONIZATION MODEL SCHEME
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An ionization model consists of two
branches, left side: particle measurement
and spectrum fit, and right side: simulation
of ionization by single particles and the
assumtion of a pitch angle distribution.
Estimated errors will now be discussed.

DETECTOR DEGENERATION
Impinging particles cause structure defects,
that effectively shift in the channel’s energy
thresholds to higher energies.
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PARTICLE DATA
Different satellites = different ionization
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range : number of fits

Measurements may differ because of

• initial characteristics (construction)
• degradation, crosstalk
• local flux variations
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CROSSTALK (POES MEPED)
Contributions by out of view particles:
<10% in the isotropic case. However, above
2 MeV the telescopes become increasingly
susceptible to out-of-field electrons. And
flux is not necessarily isotropic (e.g. radia-
tion belts).

Crosstalk by different particle energies
Proton detectors:

our simulation results by comparison with known char-
acteristics of the MEPED instrument response, we conclude
that the generally excellent agreement validates the model
geometries and simulation physics.

4.1. Proton Telescope Response

[28] Figure 3 illustrates energy deposition by protons (red,
orange) and electrons (blue) as a function of incident
energy. In the range of 20 to 4900 keV, protons exhibit an
effectively linear mapping between energy incident and total
energy deposited. This linearity corresponds to complete
absorption of the incident particle in the detector silicon.
Qualitatively, this behavior approaches the ideal of a one‐
to‐one mapping between incident energy and energy
deposited desirable in a particle detector. Above ∼4.9 MeV,
it is found that protons may penetrate the first detector
(“D1”; deposits mapped in red) to deposit energy in the
second detector (“D2”; deposits mapped in orange). To
energies of 7 MeV, however, the sum of these deposits
remains linear. Above this energy, protons pass through
both front and back detectors and are not stopped; such
protons do not deposit the entirety of their energy, and their
mapping is not linear.

[29] It is apparent that electrons (blue) show a more
complicated behavior. For energies ≥500 keV, their pres-
ence becomes increasingly obvious, yet electrons do not
exhibit the linear energy deposition characteristic of protons.
An electron’s tendency to undergo range straggling means
that it will typically deposit only a fraction of its total energy
in a thin detector. This fraction of energy will in general be
inconsistent, and characterization must be done on the basis
of averages. Thus quantifying the true extent of electron
contamination in the proton telescope is done through
geometric factor, as previously introduced in Section 3.4.
[30] The concept is illustrated for the proton telescope in

Figure 4: shown in Figure 4a are two stepwise functions
which correspond to the total number of simulated hits
(events depositing energy in detector silicon) per energy bin.
Bins may be of arbitrary fixed width, and herein correspond
to one‐quarter minor tick interval (e.g., 36 bins per order
magnitude). The “Counts (n)” scale (at far right) is equivalent
to geometric factor when properly normalized, and a measure
of the 95% confidence interval is superposed on each step
function. These functions represent the “raw” response of the
proton instrument to protons (at G ∼ 10−2 cm2 sr) and elec-
trons (with G rising from 10−5 cm2 sr). In Figures 4b and 4c,
the proton and electron responses receive treatment by energy

Figure 4. Geometric factor in the MEPED proton telescope for simulated protons and electrons.
(a) Stepwise functions corresponding to the instrument’s raw geometric factor (all hits), before application
of energy level logic. Per‐channel geometric factor for incident (b) protons and (c) electrons; channels P1
through P6 in color.
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• original detector condition: negligible crosstalk
• degraded detector: significant energy shift as already shown

Electron detectors:

level logic, and are broken into the 6 channels of proton data
P1–P6. The nominal 10−2 cm2 sr geometric factor of the
proton telescope is overlaid for reference (dashed line). Note
that the sum of these six per‐channel responses need not equal
the instrument’s raw response–events depositing less than
21.4 keV in the front detector (corresponding to the first
energy threshold) are excluded from consideration by the
logic circuitry and do not appear in any of the instrument’s six
count channels.
[31] Considering the proton response (Figure 4b), one

observes clean and well‐defined channel separation, with
each channel closely corresponding to its nominal energy
range. The geometric factor is near the expected 0.01 cm2 sr
throughout the interval 30 keV–10 MeV. In contrast, the
electron response (Figure 4c) exhibits significant overlap
between the six energy channels. An electron of given
energy may fall into any of several channels, and we say the
response demonstrates “competition” between the channels.
[32] The P4 and P5 energy channels appear uncontaminated

by incident electrons, with the P4 channel recording few hits in
the energies considered, and the P5 channel recording none at
all. The P1, P2, P3, and P6 energy channels, in contrast, each
display some sensitivity to incident electron fluxes. As can be
seen from both the raw electron response in Figure 4a and its

per‐channel equivalent in Figure 4c, the proton telescope
exhibits only a slight sensitivity (<10% of the proton response)
to electrons of energy≤450 keV,which is a feature attributed to
the effectiveness of the cross‐aperture magnetic field in
sweeping aside electrons at these energies. The effectiveness of
this broom magnet decreases with increasing electron energy,
and parity with the proton response is reached near 1MeV. For
intermediate energies, it is the case that electrons have reduced
access to the instrument.
[33] Below 100 keV, any electron hits are recorded in the

P1 energy channel. For 150–500 keV, the bulk of this
electron contamination is confined to the P2 energy channel.
Above 500 keV, incident electrons are found in the P6, P2,
P3 and P1 channels with increasing probability, such that
the P6 channel eventually comes to record the majority of
electron hits. The P3 channel fails to ever capture a plurality
of the total count.
[34] Total admittance in all channels reaches G ∼ 10−3 cm2

sr near 460 keV and G ∼ 10−2 cm2 sr by 1400 keV, and the
telescope’s P6 channel exhibits a sensitivity ofG ∼ 1.9 × 10−3

cm2 sr at 800 keV, and G ∼ 0.009 cm2 sr near 2000 keV.
Thus anomalously high particle counts in the P6 channel
(relative to the P4 and P5 energy channels) suggest contam-

Figure 5. Geometric factor in the MEPED electron telescope for simulated protons and electrons.
(a) Stepwise functions corresponding to the instrument’s raw geometric factor (all hits), before application
of energy level logic. Per‐channel geometric factor for incident (b) protons and (c) electrons; channels E1
through E3 in color.
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• no significant crosstalk is known so far

Crosstalk by different particle species
Proton detectors affected by electrons:

our simulation results by comparison with known char-
acteristics of the MEPED instrument response, we conclude
that the generally excellent agreement validates the model
geometries and simulation physics.

4.1. Proton Telescope Response

[28] Figure 3 illustrates energy deposition by protons (red,
orange) and electrons (blue) as a function of incident
energy. In the range of 20 to 4900 keV, protons exhibit an
effectively linear mapping between energy incident and total
energy deposited. This linearity corresponds to complete
absorption of the incident particle in the detector silicon.
Qualitatively, this behavior approaches the ideal of a one‐
to‐one mapping between incident energy and energy
deposited desirable in a particle detector. Above ∼4.9 MeV,
it is found that protons may penetrate the first detector
(“D1”; deposits mapped in red) to deposit energy in the
second detector (“D2”; deposits mapped in orange). To
energies of 7 MeV, however, the sum of these deposits
remains linear. Above this energy, protons pass through
both front and back detectors and are not stopped; such
protons do not deposit the entirety of their energy, and their
mapping is not linear.

[29] It is apparent that electrons (blue) show a more
complicated behavior. For energies ≥500 keV, their pres-
ence becomes increasingly obvious, yet electrons do not
exhibit the linear energy deposition characteristic of protons.
An electron’s tendency to undergo range straggling means
that it will typically deposit only a fraction of its total energy
in a thin detector. This fraction of energy will in general be
inconsistent, and characterization must be done on the basis
of averages. Thus quantifying the true extent of electron
contamination in the proton telescope is done through
geometric factor, as previously introduced in Section 3.4.
[30] The concept is illustrated for the proton telescope in

Figure 4: shown in Figure 4a are two stepwise functions
which correspond to the total number of simulated hits
(events depositing energy in detector silicon) per energy bin.
Bins may be of arbitrary fixed width, and herein correspond
to one‐quarter minor tick interval (e.g., 36 bins per order
magnitude). The “Counts (n)” scale (at far right) is equivalent
to geometric factor when properly normalized, and a measure
of the 95% confidence interval is superposed on each step
function. These functions represent the “raw” response of the
proton instrument to protons (at G ∼ 10−2 cm2 sr) and elec-
trons (with G rising from 10−5 cm2 sr). In Figures 4b and 4c,
the proton and electron responses receive treatment by energy

Figure 4. Geometric factor in the MEPED proton telescope for simulated protons and electrons.
(a) Stepwise functions corresponding to the instrument’s raw geometric factor (all hits), before application
of energy level logic. Per‐channel geometric factor for incident (b) protons and (c) electrons; channels P1
through P6 in color.
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• close to no contamination (P4 and P5)
• potentially contaminated (P1,P2 and P3)
• channels that can be used as reliable indicator for high-energy electron fluxes

(P6)

Electron detectors affected by protons:

level logic, and are broken into the 6 channels of proton data
P1–P6. The nominal 10−2 cm2 sr geometric factor of the
proton telescope is overlaid for reference (dashed line). Note
that the sum of these six per‐channel responses need not equal
the instrument’s raw response–events depositing less than
21.4 keV in the front detector (corresponding to the first
energy threshold) are excluded from consideration by the
logic circuitry and do not appear in any of the instrument’s six
count channels.
[31] Considering the proton response (Figure 4b), one

observes clean and well‐defined channel separation, with
each channel closely corresponding to its nominal energy
range. The geometric factor is near the expected 0.01 cm2 sr
throughout the interval 30 keV–10 MeV. In contrast, the
electron response (Figure 4c) exhibits significant overlap
between the six energy channels. An electron of given
energy may fall into any of several channels, and we say the
response demonstrates “competition” between the channels.
[32] The P4 and P5 energy channels appear uncontaminated

by incident electrons, with the P4 channel recording few hits in
the energies considered, and the P5 channel recording none at
all. The P1, P2, P3, and P6 energy channels, in contrast, each
display some sensitivity to incident electron fluxes. As can be
seen from both the raw electron response in Figure 4a and its

per‐channel equivalent in Figure 4c, the proton telescope
exhibits only a slight sensitivity (<10% of the proton response)
to electrons of energy≤450 keV,which is a feature attributed to
the effectiveness of the cross‐aperture magnetic field in
sweeping aside electrons at these energies. The effectiveness of
this broom magnet decreases with increasing electron energy,
and parity with the proton response is reached near 1MeV. For
intermediate energies, it is the case that electrons have reduced
access to the instrument.
[33] Below 100 keV, any electron hits are recorded in the

P1 energy channel. For 150–500 keV, the bulk of this
electron contamination is confined to the P2 energy channel.
Above 500 keV, incident electrons are found in the P6, P2,
P3 and P1 channels with increasing probability, such that
the P6 channel eventually comes to record the majority of
electron hits. The P3 channel fails to ever capture a plurality
of the total count.
[34] Total admittance in all channels reaches G ∼ 10−3 cm2

sr near 460 keV and G ∼ 10−2 cm2 sr by 1400 keV, and the
telescope’s P6 channel exhibits a sensitivity ofG ∼ 1.9 × 10−3

cm2 sr at 800 keV, and G ∼ 0.009 cm2 sr near 2000 keV.
Thus anomalously high particle counts in the P6 channel
(relative to the P4 and P5 energy channels) suggest contam-

Figure 5. Geometric factor in the MEPED electron telescope for simulated protons and electrons.
(a) Stepwise functions corresponding to the instrument’s raw geometric factor (all hits), before application
of energy level logic. Per‐channel geometric factor for incident (b) protons and (c) electrons; channels E1
through E3 in color.
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• contamination is confined to protons of energies 200–2700keV

(Figures from [Yando et al.])
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< 0.08 MeV

< 0.8 MeV

800keV-500MeV : 2

80keV-500MeV : 3

150eV-500MeV : 5

range : number of fits

Same quality of fit but still significant varia-
tions just because of the energy range.
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SUMMARY/CONCLUSIONS
reason maximum expected error possible improvements
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degeneration, energy shift depending on age and steepness of spectra up to 1000% correction e.g. [Asikainen et al.], or newer satellite
degeneration, noise effects up to 1300% (NOAA-12, including energy shift) correction e.g. [Asikainen et al.], or newer satellite
crosstalk by out-of-field contrib. 10% contribution by out-of-view particles [Yando et al.] not needed
crosstalk by different energies apart from degradation: negligible not needed
crosstalk by different species depending on channel, partly severe different detector setup or coincidence correction needed
satellite selection up to 300% proved - more possible, (but >90% are within a

range of ±50%)
-

sp
ec

tru
m

fit

quality of fit (number of functions) orders of magnitude limited by channels and theory
selection of energy range ±20% (in the center of the range significantly less) -
fixed or variable intersections up to 60% use variable intersections
fit function 30%, 70% at end of energy range theory suggestes power-law

io
ni

za
tio

n
sim

ul
at

io
n atmospheric conditions few % without tropopause not needed

kind of deposition algorithm some % not needed
statistics in e.g. Monte-Carlo <5% not needed
transformation to ion pair prod. <10% not needed

re
m
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ni

ng
pr

ob
lem

s non-isotropic pitch angle distrib. -40% to +60% needs new detector setup
SAA ? -
regional resolution strongly depending on model, but without regional resolution

is not better
limited: a) temporal resolution vs. spatial resolution, b) more
satellites needed

PITCH ANGLE
The pitch angle distribution is not mea-
sured regularly. Most common assumption
is isotropic. What happens if this assump-
tion is wrong?

• Ionization will be shifted in altitude.
• Particle measurement not reliable due

to contamination by out-of-view parti-
cles.
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QUALITY OF FIT
The amount of fit functions per magnitude
defines quality of fit.
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PARTICLE MEASUREMENTS

• degeneration, energy shift
• degeneration, noise effects
• crosstalk by out-of-field contributions
• crosstalk by different energies
• crosstalk by different species
• satellite selection

REMAINING PROBLEMS

• non-isotropic pitch angle distribution
• SAA
• regional resolution

SPECTRUM FIT

• quality of fit (number of functions)
• selection of energy range
• fixed or variable intersections
• kind of fit function

MODELING IONIZATION

• atmospheric conditions
• kind of deposition algorithm
• statistics in e.g. Monte-Carlo
• transformation to ion pair production



Particle measurements

Particle measurements
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Detector degeneration - energy shift

Reason
impinging particles
cause structure
defects

Effect

shifts channel’s
energy thresholds to
higher energies
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Solution
Using new satellites or applying correction factors
[Asikainen et al., 2012] may improve data.



Crosstalk

e.g. in MEPED electron detectors [Yando et al., 2011]

Electron sensitivity:

level logic, and are broken into the 6 channels of proton data
P1–P6. The nominal 10−2 cm2 sr geometric factor of the
proton telescope is overlaid for reference (dashed line). Note
that the sum of these six per‐channel responses need not equal
the instrument’s raw response–events depositing less than
21.4 keV in the front detector (corresponding to the first
energy threshold) are excluded from consideration by the
logic circuitry and do not appear in any of the instrument’s six
count channels.
[31] Considering the proton response (Figure 4b), one

observes clean and well‐defined channel separation, with
each channel closely corresponding to its nominal energy
range. The geometric factor is near the expected 0.01 cm2 sr
throughout the interval 30 keV–10 MeV. In contrast, the
electron response (Figure 4c) exhibits significant overlap
between the six energy channels. An electron of given
energy may fall into any of several channels, and we say the
response demonstrates “competition” between the channels.
[32] The P4 and P5 energy channels appear uncontaminated

by incident electrons, with the P4 channel recording few hits in
the energies considered, and the P5 channel recording none at
all. The P1, P2, P3, and P6 energy channels, in contrast, each
display some sensitivity to incident electron fluxes. As can be
seen from both the raw electron response in Figure 4a and its

per‐channel equivalent in Figure 4c, the proton telescope
exhibits only a slight sensitivity (<10% of the proton response)
to electrons of energy≤450 keV,which is a feature attributed to
the effectiveness of the cross‐aperture magnetic field in
sweeping aside electrons at these energies. The effectiveness of
this broom magnet decreases with increasing electron energy,
and parity with the proton response is reached near 1MeV. For
intermediate energies, it is the case that electrons have reduced
access to the instrument.
[33] Below 100 keV, any electron hits are recorded in the

P1 energy channel. For 150–500 keV, the bulk of this
electron contamination is confined to the P2 energy channel.
Above 500 keV, incident electrons are found in the P6, P2,
P3 and P1 channels with increasing probability, such that
the P6 channel eventually comes to record the majority of
electron hits. The P3 channel fails to ever capture a plurality
of the total count.
[34] Total admittance in all channels reaches G ∼ 10−3 cm2

sr near 460 keV and G ∼ 10−2 cm2 sr by 1400 keV, and the
telescope’s P6 channel exhibits a sensitivity ofG ∼ 1.9 × 10−3

cm2 sr at 800 keV, and G ∼ 0.009 cm2 sr near 2000 keV.
Thus anomalously high particle counts in the P6 channel
(relative to the P4 and P5 energy channels) suggest contam-

Figure 5. Geometric factor in the MEPED electron telescope for simulated protons and electrons.
(a) Stepwise functions corresponding to the instrument’s raw geometric factor (all hits), before application
of energy level logic. Per‐channel geometric factor for incident (b) protons and (c) electrons; channels E1
through E3 in color.
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1Sensitivity for proton contamination:

level logic, and are broken into the 6 channels of proton data
P1–P6. The nominal 10−2 cm2 sr geometric factor of the
proton telescope is overlaid for reference (dashed line). Note
that the sum of these six per‐channel responses need not equal
the instrument’s raw response–events depositing less than
21.4 keV in the front detector (corresponding to the first
energy threshold) are excluded from consideration by the
logic circuitry and do not appear in any of the instrument’s six
count channels.
[31] Considering the proton response (Figure 4b), one

observes clean and well‐defined channel separation, with
each channel closely corresponding to its nominal energy
range. The geometric factor is near the expected 0.01 cm2 sr
throughout the interval 30 keV–10 MeV. In contrast, the
electron response (Figure 4c) exhibits significant overlap
between the six energy channels. An electron of given
energy may fall into any of several channels, and we say the
response demonstrates “competition” between the channels.
[32] The P4 and P5 energy channels appear uncontaminated

by incident electrons, with the P4 channel recording few hits in
the energies considered, and the P5 channel recording none at
all. The P1, P2, P3, and P6 energy channels, in contrast, each
display some sensitivity to incident electron fluxes. As can be
seen from both the raw electron response in Figure 4a and its

per‐channel equivalent in Figure 4c, the proton telescope
exhibits only a slight sensitivity (<10% of the proton response)
to electrons of energy≤450 keV,which is a feature attributed to
the effectiveness of the cross‐aperture magnetic field in
sweeping aside electrons at these energies. The effectiveness of
this broom magnet decreases with increasing electron energy,
and parity with the proton response is reached near 1MeV. For
intermediate energies, it is the case that electrons have reduced
access to the instrument.
[33] Below 100 keV, any electron hits are recorded in the

P1 energy channel. For 150–500 keV, the bulk of this
electron contamination is confined to the P2 energy channel.
Above 500 keV, incident electrons are found in the P6, P2,
P3 and P1 channels with increasing probability, such that
the P6 channel eventually comes to record the majority of
electron hits. The P3 channel fails to ever capture a plurality
of the total count.
[34] Total admittance in all channels reaches G ∼ 10−3 cm2

sr near 460 keV and G ∼ 10−2 cm2 sr by 1400 keV, and the
telescope’s P6 channel exhibits a sensitivity ofG ∼ 1.9 × 10−3

cm2 sr at 800 keV, and G ∼ 0.009 cm2 sr near 2000 keV.
Thus anomalously high particle counts in the P6 channel
(relative to the P4 and P5 energy channels) suggest contam-

Figure 5. Geometric factor in the MEPED electron telescope for simulated protons and electrons.
(a) Stepwise functions corresponding to the instrument’s raw geometric factor (all hits), before application
of energy level logic. Per‐channel geometric factor for incident (b) protons and (c) electrons; channels E1
through E3 in color.
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Particle measurements Crosstalk

Effect of crosstalk on quite day ionization profile (electrons)

mep0e3

104 106 108 1010

104

102

100

10-2

10-4

0

16

31

49

66

81

94

108

144

233

444

ionisation rate @m-3s-1D

P
re

ss
u

re
@Pa

D

al
ti

tu
d

e
ap

p
ro

x.
@km

D

proton and electron HdashedL ionization at geomagn. pole

quiet timeAIMOS v1.1

275:2h

270:2h

265:2h

250:2h

time

SOHO EPHIN

104 106 108 1010

104

102

100

10-2

10-4

0

16

31

49

66

81

94

108

144

233

444

ionisation rate @m-3s-1D

P
re

ss
u

re
@Pa

D

al
ti

tu
d

e
ap

p
ro

x.
@km

D

proton and electron HdashedL ionization at geomagn. pole

quiet timeAIMOS v1.3

275:2h

270:2h

265:2h

250:2h

time

Solution
Probably solved/improved by new correction algorithms. [Janet Green]
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Variation among (same) satellites
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Variation among satellites

672 profiles, day 280 to 335, 2003
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None



Spectrum fit

Spectrum fit
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Quality of fit (number of functions)
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Different energy range of the model
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Different energy range of the model
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function here is the same.



Different energy range - results for Nov–Dec 2006

800keV-500MeV:2 vs. ext. r.

80keV-500MeV:3 vs. ext. r.
720 profiles, Nov-Dec 2006

1.000.50 2.000.30 1.500.70
20

40

60

80

100

ratio of ionization rates: range�Hextended rangeL

al
tit

ud
e

@km
D

ionization depending on model specific energy range

25

50

75

90

100

am
ou

nt
of

co
m

pa
ris

on
s

ar
ou

nd
m

ed
ia

n
@%

D

Solution
None



Summary of the uncertainties in modeling particle
precipitation

reason maximum expected error possible improvements

degeneration, energy shift depending on age and steepness of
spectra up to 1000%

correction e.g. [Asikainen et al., 2012],
or newer satellite

degeneration, noise effects up to 1300% (NOAA-12, including en-
ergy shift)

correction e.g. [Asikainen et al., 2012],
or newer satellite

crosstalk by out-of-field contrib. 10% contribution by out-of-view parti-
cles [Yando et al., 2011]

not needed

crosstalk by different energies apart from degradation: negligible not needed
crosstalk by different species depending on channel, partly severe different detector setup or coincidence

correction needed
satellite selection up to 300% proved - more possi-

ble, (but >90% are within a range of
±50%)

-

quality of fit (number of functions) orders of magnitude limited by channels and theory
selection of energy range ±20% (in the center of the range sig-

nificantly less)
-

fixed or variable intersections up to 60% use variable intersections
fit function 30%, 70% at end of energy range theory suggestes power-law

atmospheric conditions few % without tropopause not needed
kind of deposition algorithm some % not needed
statistics in e.g. Monte-Carlo <5% not needed
transformation to ion pair prod. <10% not needed

non-isotropic pitch angle distrib. -40% to +60% needs new detector setup
SAA ? proton crosstalk in e-channels may be

corrected
regional resolution strongly depending on model, but with-

out regional resolution is not better
limited: a) temporal resolution vs.
spatial resolution, b) more satellites
needed



Regarding these uncertainties, should particle precipitation
models be used?

AIMOS
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electron density

IS radar observation
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[Wissing et al., 2011]
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Outlook: AIMOS Update v1.7

removed proton contamination

work in MLT rather than LT

reduced impact of spikes

improved spatial resolution in
main precipitation regions

current status: verification against
AARDDVARK

http://aimos.physik.uos.de
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