Modeling Particle Precipitation in the Earth's Atmosphere and how precise it is 10th European Space Weather Week, Antwerpen

Motivation

Why are we interested in precipitating particles?

Impacts:

- ionization
- chemical processes
- electric conductivity

Measurement of

- input (needs in-situ particle measurements)
- effects (TEC: radars, GPS or limp-sounding: MIPAS)

Outline

Outline

- O How do particle precipitation models work?
- Item are these models?
 - satellite data
 - model assumptions

How does an ionization model work?

Assumptions and Limitations in Modeling atmospheric Ionization by precipitating Particles

PARTICLE MEASUREMENTS

- · degeneration, energy shift
- · degeneration, noise effects
- · crosstalk by out-of-field contributions
- · crosstalk by different energies
- · crosstalk by different species
- satellite selection

REMAINING PROBLEMS

- · non-isotropic pitch angle distribution
- SAA
- regional resolution

SPECTRUM FIT

- · quality of fit (number of functions)
- · selection of energy range
- · fixed or variable intersections
- · kind of fit function

MODELING IONIZATION

- · atmospheric conditions
- · kind of deposition algorithm
- · statistics in e.g. Monte-Carlo
- · transformation to ion pair production

Particle measurements

Jan Maik Wissing (University of Osnabrück)

Modeling Particle Precipitation

Detector degeneration - energy shift

Solution

Using new satellites or applying correction factors [Asikainen et al., 2012] may improve data.

Crosstalk

e.g. in MEPED electron detectors [Yando et al., 2011] Electron sensitivity:

Sensitivity for proton contamination:

Effect of crosstalk on quite day ionization profile (electrons)

Solution

Probably solved/improved by new correction algorithms. [Janet Green]

Jan Maik Wissing (University of Osnabrück)

Modeling Particle Precipitation

Variation among (same) satellites

measurements may differ because of

- different initial characteristics (construction)
- degradation, crosstalk
- local flux variations

Variation among satellites

Solution

None

Spectrum fit

Quality of fit (number of functions)

Different energy range of the model

Different energy range of the model

The ratio of magnitudes in energy range divided by the number of fit function here is the same.

Different energy range - results for Nov-Dec 2006

Solution

None

Summary of the uncertainties in modeling particle precipitation

reason	maximum expected error	possible improvements
degeneration, energy shift degeneration, noise effects	depending on age and steepness of spectra up to 1000% up to 1300% (NOAA-12, including en-	correction e.g. [Asikainen et al., 2012], or newer satellite correction e.g. [Asikainen et al., 2012],
	ergy shift)	or newer satellite
crosstalk by out-of-field contrib.	10% contribution by out-of-view parti- cles [Yando et al., 2011]	not needed
crosstalk by different energies	apart from degradation: negligible	not needed
crosstalk by different species	depending on channel, partly severe	different detector setup or coincidence correction needed
satellite selection	up to 300% proved - more possible, (but $>$ 90% are within a range of \pm 50%)	
quality of fit (number of functions)	orders of magnitude	limited by channels and theory
selection of energy range	\pm 20% (in the center of the range sig- nificantly less)	
fixed or variable intersections	up to 60%	use variable intersections
	So /8, 70 /8 at end of energy range	theory suggestes power-law
atmospheric conditions	few %	without tropopause not needed
kind of deposition algorithm	some %	not needed
statistics in e.g. Monte-Carlo	<5%	not needed
transformation to ion pair prod.	< 10%	not needed
non-isotropic pitch angle distrib.	-40% to +60%	needs new detector setup
SAA	?	proton crosstalk in e-channels may be corrected
regional resolution	strongly depending on model, but with- out regional resolution is not better	limited: a) temporal resolution vs. spatial resolution, b) more satellites needed

Regarding these uncertainties, should particle precipitation models be used?

Outlook: AIMOS Update v1.7

- removed proton contamination
- work in MLT rather than LT
- reduced impact of spikes
- improved spatial resolution in main precipitation regions
- current status: verification against AARDDVARK
- http://aimos.physik.uos.de

Elector *	Du Máse +		
+ + + * 0 h	ttp://aimos.physik.	uos.de 🔄 🕫 😢 - 2000 Solar Proton B	•₽ ÷ ⊡ • ₽
logged in as Jan Maik logout AIMOS - Atmosph	ere Ionization /		DSNABRÜCK
information	select options for calc	ulation - at the moment 2002 doy 1 to 2010 doy 333 are available (doy-day of	f year, <u>information</u>
What is ADMOS? Information (README)	grid ID. pressure ID.	1	
intern	AIMOS version	12 (default)	•
user deta definition: grid definition: pressure	starting day: ending day:		year:
calculation	plot range (optional), m	ár.	max
download forum - faq	plot color:	color(tue) ·	
Admin Higheder verwalten	plot: not possible	check if piot is possible 0 E 180 calculate (including plot if possible)	

	Associate III C. et al. CEANTA a simulation toolkit. Nucl. Instr. Math. 505, p. 250, 2002
	Agostineili, S. et al., GEANTH-a simulation tooliki, Nucl. Instr. Meth. 506, p. 250–505, 2005
	Asikainen, T., K. Mursula, V. Maliniemi, Correction of detector noise and recalibration of NOAA/MEPED energetic proton fluxes, submitted 2012 to JGR
	Berger, M.J., S.M. Seltzer and K. Maeda, Energy deposition by auroral electrons in the atmosphere, J. Atm. Solar-Terr. Phys. 32, p. 1015–1045, 1970
	Callis, L.B., Odd nitrogen formed by energetic electron precipitation as calculated from TIROS data, Geophys. Res. Letters, vol 24, No 24, p. 3237–3240, 1997
	Callis, L.B., M. Natarajan, D. S. Evans and J. D. Lambeth, Solar atmospheric coupling by electrons (SOLACE) 1. Effects of the May 12, 1997 solar event on the middle atmosphere, J. Geophys. Res. 103, p. 28 405–28 419, 1998
	Callis, L.B. and J. D. Lambeth, NO _y formed by precipitating electron events in 1991 and 1992: Descent into the stratosphere as observed by ISANS, <i>Geophys. Res. Let.</i> , Vol. 25, No. 11, p. 1875–1878, 1998.
	Fang, X., M.W. Liemohn, J.U. Kozyra, D.S. Evans, A.D. DeJong and B.A. Emery, Global 30-240 keV proton precipitation in the 17-18 April 2002 geomagnetic storms: 1. Patterns, J. Geophys. Res., 112, A05301, doi:10.1029/2006JA011867, 2007
	Funke B. & Baumpaertner M. Calisto T. Foorova, C.H. Jackman, J. Kieser A. Krivolutsky, M. Linez-Puertas, D.B. Marsh
	T. Reddmann, E. Rozanov, SM. Salmi, M. Sinnhuber, G. P. Stiller, P. T. Verronen, S. Versick, T. von Clarmann, T. Y. Vyushvova, N. Wieters and J. M. Wissing, Composition changes after the 'Halloween' solar proton ovent: the High-Energy Particle Precipitation in the Atmosphere (HEPPR) model versus MIPAS data inter-comparison study, Atmospheric
-	Chemistry and Physics, 11, p. 9089-9139, acp-2010-1001, 2011
	Hardy, D.A., M.S. Gussenhoven and D. Brautigam, A statistical model of the auroral ion precipitation, J. Geophys. Res., 94, p. 370, 1989
	Jackman, C.H., R.D. McPeters, G.J. Labow, E.L. Fleming, C.J. Praderas and J.M. Russell, Northern hemisphere atmospheric effects due to the July 2000 Solar Proton Event, <i>Geophys. Res. Lett.</i> , 28 (15), p. 2883–2886, 2001
	Jackman, C.H., M.T. DeLand, G.J. Labow, E.L. Fleming, D.K. Weisenstein, M.K.W. Ko, M. Sinnhuber, and J.M. Russell, Neutral atmospheric influences of the solar proton events in October–November 2003, <i>J. Geophys. Res.</i> , 110, A09527, doi:10.1022/2004.010688, 20054
	Roble, R.G. and E.C. Ridley, An auroral model for the NCAR thermospheric general circulation model (TGCM), Ann. Geophys., 5A, p. 369–382, 1987
	Schröter J. B. Heber, F. Steinhilber and MB. Kallenrode. Energetic particles in the atmosphere: a Monte Carlo approach
_	Adv. Space Res. 37, (8), p. 1597–1601, 2006.
	Wissing, J.M., J.P. Bornebusch and MB. Kallenrode Adv. Space Res. 41, p. 1274–1278, 2008
ī.	Wissing, J.M. and MB. Kallenrode, Atmospheric Ionization Module OSnabrück (AIMOS) 1: A 3-D model to determine
_	atmospheric ionization by energetic charged particles from different populations, J. Geophys. Res., 114, A06104, doi:10.1029/2008JA013884, 2009
1	Wissing, J.M., MB. Kallenrode, N. Wieters, H. Winkler and M. Sinnhuber, Atmospheric Ionization Module Osnabrück
_	(AIMOS): 2. Total particle inventory in the October/November 2003 event and ozone, J. Geophys. Res., 115, A02308, doi:10.1029/2009JA014419, 2010
	Wissing, J.M., MB. Kallenrode, J. Kieser, H. Schmidt, M.T. Rietveld, A. Strømme and P.J. Erickson, Atmospheric
_	Ionization Module OSnabrück (AIMOS) 3: Comparison of electron density simulations by AIMOS/HAMMONIA and incoherent scatter radar measurements, J. Geophys. Res., 116, A08305, doi:10.1029/2010JA01630, 2011
	K. Yando, R.M. Millan, J.C. Green and D.S. Evans: A Monte Carlo simulation of the NOAA POES Medium Energy Proton