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Main Points 
• M-P-I coupling is a key component of space weather 
• Space weather effects thus occur in the ionosphere at 

all latitudes and impact a range of users 
• An international consortium of HF over-the-horizon 

radars has been developed for ionospheric research  
• The mid-latitude radars can examine the projection of 

the radiation belt and ring current to the ionosphere 
• Observations show substorm-related convective flows, 

and wave and wave-particle events 
• The observations inform models of plasma wave 

interaction with the ionosphere 
• This is an underdeveloped area of research 
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The ionosphere is dynamically linked with the 
magnetosphere above and the atmosphere below 
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Many wave processes occur 
in the magnetosphere 



Radiation belt 
energetic particle flux 
over a solar maximum 
year 

The radiation belts 
map to the mid-
latitude ionosphere 

5 



Space weather effects in the ionosphere  
High latitudes 
Signatures of energy and momentum transfer from the 
solar wind, e.g. convective flows and flow bursts;  storm 
phenomena, e.g. absorption ; scintillation, e.g. for GNSS 
Middle latitudes 
Enhanced convective flows and density structures; TIDs?; 
plasma wave driven density variations; substorm effects  
Low latitudes 
Irregularities producing scintillation, degradation of radio 
astronomy signals, Doppler clutter in surveillance radars 

 

6 



7 

Example:  plasmaspheric plumes 
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Plasmasphere erosion causes storm-time density gradients 

Yizengaw et al., GRL, 2006.  Southward turning Bz causes 
antisunward ExB convection in the magnetosphere morning sector.   
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Ionospheric signature of plasmaspheric plume 
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Plumes extend to the magnetopause and affect reconnection 

Walsh et al., 
Science, 2014   



High frequency (HF) over-the-horizon radars 

 

 
 

HF radars measure intensity 
and Doppler shift of 
backscatter from the 
ionosphere.  SuperDARN is a 
network of research HF 
OTHRs.   
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SuperDARN was developed mainly to measure 
ionospheric plasma convection  
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A growing network of mid-latitude SuperDARN radars 
measures storm-related and other effects   



Footprints of the TIGER 
radars: 
Bruny (blue), 1999- 
Unwin (red), 2004- 
Buckland Park (orange), 
2014-. 

The TIGER array foms the lowest latitude SuperDARN radars 
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Unwin (Invercargill) 
and Buckland Park 
(Adelaide) 
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TIGER observations 
What we expect:  F-region motions driven  by field line 
resonances and drift-bounce resonances.  What we see: 
1. Complex storm-time motions at low latitudes. 
2. Narrow westward convective flows associated with 

substorms and region 2 downward FAC.  Equatorward 
edge is plasmapause proxy. 

3. Highly coherent F-region oscillations due to plasma 
waves, associated with these westward flows and 
injection of ring current particles. 

4. ~3 mHz discrete frequency oscillations near the 
plasmapause at quiet times. 

5. Substorm-associated plasma oscillations driven by Pi2 
pulsations. 
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Example Buckland Park range-time and velocity-time plot, 
12 April 2014, late recovery phase of Kp=5- storm.  
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Westward F-region flows mapping to the plasmapause 

Flow speed (top) and direction (bottom) for TIGER beam 4 on 
7 April 2001.  Triangles represent plasmapause locations.  
Parkinson et al., AG, 2007. 
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F-region plasma motions driven by ULF waves: 8 April 2009. 
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F-region plasma motions driven by ULF waves: 15 Feb 2008. 

Beam 1 
velocity 

Bruny beam 14 
power 

Beam 14 
velocity 

Wave features 



Bruny Beams 1 & 11  
15 Feb 2008 

Beam 1 power 

Beam 11 power 

Strong toward 
(westward) flow 

Pulsations 

Beam 1 velocity 

Beam 11 velocity 



 

Scattering locations (CGM coordinates) for this event 

Modelled plasmapause 
location 

Macquarie 
Island 



 

Monitors of current systems 

Strongly enhanced 
westward auroral 
electrojet 
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Typical example of discrete frequency oscillations in TIGER 
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Discrete frequency oscillations in TIGER-Bruny over 3 years 
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The discrete frequency oscillations appear to come from 
the projection of the plasmapause 



Progress on modelling 
1. We have developed a 2-D model of interaction 

between plasma waves and the ionosphere.  The 
model includes inclined B and downgoing wave 
mode mix.  With suitable wave parameters this can 
replicate observations. 

2. This forms the lower boundary of a 2-D model of 
wave propagation and coupling through the 
magnetosphere.  This is the first model to include a 
realistic ionosphere, and can predict amplitude and 
phase variations at the ground. 

3. We are now including particle motions, and moving 
the model to full 3-D. 
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Amplitude and phase of oscillations in the low-latitude ionosphere 
and on the ground, 12 Jan 1994.  Menk et al, GRL 2007. 



29 

Modelled amplitude and 
phase of wave-driven 
ionospheric oscillations, 
assuming incident wave 
changes from 98% Alfven 
mode at 53 mHz to pure 
fast mode at 43 and 63 
mHz. 
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Wallops HF radar line-of-sight drift velocities for a substorm 
associated Pi2 event (black dots), ground magnetic field 
perturbation bx (blue) and modelled ground field perturbation 
(red).  Gjerloev et al., GRL, 2007.  



2 ½ D model of plasma wave 
propagation through magnetosphere 
using realistic density and  boundary 
conditions (left), to confirm and 
predict ground magnetometer 
signatures of plasma plumes (below). 

Density 
plume 

Density 
plume 
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Summary 
• Mid-latitude radars monitor the projection to the 

ionosphere of ring current and M-P-I coupling events  
• Effects are observed include convective flows near the 

plasmapause, substorm particle injections, and 
magnetospheric plasma waves 

• At least some of these effects have user impacts (e.g. 
Doppler clutter in surveillance radars) 

• Modelling of the propagation of plasma waves through 
the magnetosphere can (with input of observational 
parameters) simulate plasma motions seen by radars 

• Other effects await explanation 
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Questions? 
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