Uncertainties in traceable radiometric calibration of EUV instruments using synchrotron radiation

Alexander Gottwald (UV and VUV detector-based radiometry) Frank Scholze (EUV detector-based radiometry) Roman Klein (Source-based calibrations)

Physikalisch-Technische Bundesanstalt

Traceability

- 2 -

... or: what metrology institutes are good for.

common radiometric SI units:

Traceability

traceability of radiant power

۲

source based radiometry

traceability to:

primary source standard

emission calculable based on basic physical principles

in UV, VIS, IR: black body radiator

Planck's law, $\boldsymbol{\Phi}_{e,\lambda} \sim T^4$ $T < 3800 \text{ K} \Rightarrow \lambda > 200 \text{ nm}$

in VUV/EUV: electron storage ring Schwinger equation

detector based radiometry

traceability to:

primary detector standard

(cryogenic) electrical substitution radiometer (ESR)

based on equivalence between electrical and radiative heating

radiometric measurement is traceable to measurement of electrical quantities

۲

- 3 -

Examples: EUV instrument calibrations

Characterisation of space-based instruments in the VUV / EUV spectral range by PTB:

- 4 -

- reference source calibration
- detector calibration
- filter transmission
- mirror reflectivity
- grating efficiency
- spectrometer characterisation

Year of calibration	Wavelength range	Instrument		Mission
1994	50 to160 nm	SUMER Solar Ultraviolet Measurements of Emitted Radiation		SOHO Solar and Heliospheric
1994	15 to 80 nm	CDS Coronal Diagnostic Spectrograph		Observatory launch Dec 2,1995
1996	15 to 80 nm	SERTS Solar EUV Rocket Telescope and Spec launches Nov 18, 1		ectrograph 1997 and June 24, 1999
1998	1 to 20 nm	SEE Solar EUV Experiment Thermosp Mesosphe Dynamics		TIMED here lonosphere here Energetics and
2004	115 to 135 nm	TWINS Two Wide-Angle Imaging Neutral-Atom Spectrometers launch June 28,2006		
2004	15 to 80 nm	EIS EUV Imaging Spectrometer	r	SOLAR-B launch Sep 22, 2006
2005	15 to 80 nm	MOSES Multi-Order Solar EUV Spectograph launch Feb. 8, 2006		
2007	17 nm to 37 nm	EUNIS Extreme Ultraviolet Normal Incidence Spectrometer launches in 2006, 2007, 2008		
2004 2006	10 to 240 nm	SOL-ACES Solar Auto-Calibrating EUV/UV Spectrophotometers		SOLAR Solar Monitoring Observatory / ISS
2002 2007	180 to 3200 nm	SOL-SPEC Solar Spectral Irradiance Measurement		launch Feb 7, 2008
2005 2006 2007	1 to 240 nm	LYRA Lyman-alpha Radiometer SWAP Sun Watching using APS detectors and image processing		PROBA II Project for On Board Astronomy launch Nov 2, 2009
2009 2010	10 to 240 nm	EUI Extreme-Ultraviolet Imager		Solar Orbiter scheduled 2015 +x

1982 - 1999: BESSY I

located in (West-)Berlin, Wilmersdorf

since 1999: BESSY II

BESSY II: multi-user facility, circumference 250 m, electron energy 1.7 GeV PB

located in Berlin-Adlershof

since 2008: MLS

Metrology Light Source MLS: PTB-owned facility, circumference 48 m, electron energy 100 - 630 MeV

located in Berlin-Adlershof

- 5 -

PTB facilities for synchrotron radiation

PB

- 6 -

•

Source-based radiometry

use of electron storage ring as primary source standard (calculable radiation)

direct calibration

(a) calibration of energy-dispersive detectors & spectrometers

- 7 -

calibration of transfer standard

(b) calibration of radiation sources

Calculable Synchrotron Radiation

electron beam and storage ring parameters

- W electron beam energy
- I electron current
- $\Sigma_{\rm y}$ vertical extension and divergence of the beam

- 8 -

B magnetic induction

geometrical quantities

d distance

r radius of aperture

۲

PB

 ψ emission angle

Uncertainty Budget

- 9 -

The spectral radiant power is available with rel. uncertainties well below 0.1 %

R. Klein et al., Phys. Rev. STAB 11 (2008) 110701

Direct calibration

direct calibration:

- spectrometer must fit at the beamline (!)
- spectrometer must not vignette incident beam
- divergent beam, source is not ∞
- white beam: higher orders with grating spectrometer
- SR is (strongly) linear polarised

will add uncertainties "+ X %"

depending on the individual instument

- 10 -

so far not done at PTB for <u>external</u> partners

new instrumentation @ PTB "space tank" : max. 1,50 m length, 100 kg weight •

Transfer source calibration

Calibration of transfer standards

 $D_2 \text{ lamp } (\lambda > 120 \text{ nm}) \text{ cont. spectrum}$ HC ($\lambda < 100 \text{ nm}$) discrete spectrum

- "One step more"
- transfer standard itself adds (high) uncertainty
- t.s. has only limited spectral width
- t.s. has only limited "lifetime" (aging)

10⁴ 10⁴ Synchrotron Radiation Blackbody Radiation 10³ Radiance of Emission Line / W m² sr⁻¹ 10³ / W m⁻² sr 10² 10² Spectral Radiance 10¹ 10 Continuum Radiation Deuterium Lamp 10° 10⁶ Carbon Arc Tungsten Ribbon Lamp Emission Line Radiation: Hollow-Cathode Discharge 10 10-1 Penning Discharge ECR-Plasma Radiata 10^{-2} 10^{-2} 10 100 1000 10000 Wavelength / nm

typical uncertainties (HC), k=2:

12 - 16 % radiometric calibration incl. 10 % reproducibility (40 h operation)

Advantages:

- transfer standard available at your lab
- re-calibration campaigns possible

Hollandt et al., Metrologia 30 (1993) 381-388

well-known examples: SUMER- , CDS source.

- 11 -

Validation

Bilateral PTB – NIST comparison

spectral radiant intensity of deuterium lamps 200 nm – 350 nm

(NIST: spectral irradiance) combined uncertainty *U* (*k*=2): 5.4 %

Agreement of calibrations (= scales of spectral radiant intensity) within combined uncertainty $\approx 5 \%$

- 12 -

Arp et al., Metrologia 48 (2011) 261-267

primary detector standard

primary detector standard:

(cryogenic) electrical substitution radiometer

- Optimized for VUV radiation (40 nm to 400 nm)
- 100 mK/µW sensitivity
- 120 s time constant

main contributions from ESR (@ 200 nW)

total

total	0.19 %
	0.00 /0
electrical calibration	0 03 %
temperature deviations	0.05 %
non-equivalence correction	0.17 %

PB

main contributions from SR radiation (@ 60 nm)

false light (higher orders)0.15 %wavelength & bandpass0.02 %stability0.18 %

- 14 -

0.24 %

PTB's VUV beamline 40 nm – 400 nm

Gottwald et al., Meas. Sci. Technol. 30 (2010) 381-388

Scale of spectral responsivity

... as realised at PTB from UV to X-ray using synchrotron radiation

... using "well-behaving" (?) semiconductor photodiodes as secondary standards

PB

The weak point

main contributions from "good" secondary detector (@ 60 nm)

photocurrent measurement	0.30 %	
dark current variability	<0.01 %	
thermal stability	<0.01 %	
spatial uniformity	0.20 %	
polarisation dependence	0.05 %	
CO MARK		
total	0.37 %	largest contribution to total uncertainty

for wavelengths 25 nm < λ < 140 nm :

- available radiant power low (< 300 nW)
- detector responsivity low
- strong detector non-uniformities

detector aging still not covered (!) in <u>calibration</u> uncertainty budget

... as it will occur in use of the detector after the calibration.

- 16 -

Si absorption length

SiO₂ absorption

L.Shi et al., (data from Palik, Henke)

IEEE Transactions on Electron Devices 59, 2012, 2888

In particular for 70 nm < λ < 200 nm :

- 17 -

- absorption of radiation within top layer < 10 nm</p>
- photon energy sufficient to create photoelectrons

VUV absorption of synthetic quartz glasses Hosono et al., Appl. Phys.Lett. **74** (1999) 2755

Si absorption length

SiO2 absorption

In particular for 70 nm < λ < 200 nm :

- 18 -

- high surface sensitivity
- high degradation potential

not only for detectors, but for any optical component (filter, mirror, grating)

Photon-detector interaction

contamination layer passivation layer, oxide depletion layer

substrate

- absorption within the first few nm
- condensates, adsorbates, carbon growth
- photoemission \rightarrow secondary effects, chemistry
- surface charging (oxide)

radiation damage (chemical bond-breaking)

• recombination losses \rightarrow **loss in responsivity**

- 19 -

The ideal detector?

- 20 -

Si n – p with thin (6 nm) nitrided oxide layer	+ highest responsivity + high uniformity + "100% internal QE"	- STRONG degradation
Si n – p with metal/nitride filter	+ high stability	- low responsivity
PtSi-nSi Schottky	 + high irradiation stability + contamination removal 	 low responsivity low uniformity high dark current electrically instable
Boron technology p – n , "PureB-diode" <10 nm dead layer	+ high stability + high responsivity	- low uniformity - availability (?)

So far, all available detectors for this spectral region have drawbacks

The PureB technology has the potential to overcome this

•

Detector stability

... under VUV irradiation

@ synchrotron

Richter et al., Appl. Opt., 2002, 7167

with 157 nm F₂-Laser

-21-

• • •

... when stored (1-year recalibration cycle)

- 22 -

Relative stability of different secondary standards over a one-year recalibration cycle

- no common behaviour: wavelenght/type/individual dependant
- calibration can not be better than drift of secondary standard

- PTB internal comparison source vs. detector standard Klein e
- CCPR comparison PTB-NIST 135 nm 250 nm
- CCPR comparison PTB-NIST-NMIJ 10 nm 20 nm

Klein et al., Metrologia 48 (2011) 219

Gottwald et al., Metrologia 48 (2011) 02001

PIB

260

Scholze et al., Metrologia 47 (2010) 02001

Best calibration stategy ?

Realization of the radiometric scale(s) by NMIs is available with low uncertainties

HOWEVER

- Dissemination of the scale by secondary (transfer) standard adds (large) uncertainties
- Direct calibration of instruments adds (large) uncertainties due to "nonequivalence" between calibration and measurement (beam) conditions
- Secondary standards as well as the instruments itself are affected by ageing (degradation) issues
- Instruments should be designed in a way that they are suitable for direct calibration with synchrotron radiation
- For the VUV range, development/improvement/commercialisation of stable transfer standards is urgently needed

- 24 -

Ageing (& contamination) must be handled (witnessed. avoided. removed.)

Thank you for your attention.

- 25 -

View of the MLS experimental hall