SDO-EVE UPDATE AND OTHER THOUGHTS

Andrew Jones (CU/LASP)

andrew.jones@lasp.colorado.edu

ACCOMPLISHMENTS SINCE LAST WORKSHOP

- Released EVE Version 4 data
 - 30.4 nm improvements (All especially Janet, Seth)
 - Short wavelength degradation improvements
 - Short wavelength scale (Giulio)

- Space Weather Products
 - SEM equivalent formed on low-latency ESP L0CS data
 - SAM flare positions used at SWPC

EVE SCIENCE WORKING GROUPS: SEPTEMBER 2013

- More progress on SXR spectral modeling —DEMs using EVE and RHESSI
- Some SXR measurements becoming available:
 - **EVE-SAM (Cissi)**
 - EVE rocket SAM with objective grating
 - EVE rocket X123 X-ray spectrometer
 - MinXSS X123 will fly next year!

MEGS-A FILTER MODEL

Model fits better with a C O model than C.

My current hypothesis is that oxidation and contamination contribute to the Al filter degradation.

LYRA DEGRADATION MODEL

~ 13 nm of Si & C contaminants give a good fit for all channels except for the Al channel.

I have not examined oxidation yet! (next week...)

FUTURE

- Add oxygen to LYRA analysis
- NASA proposal to look at degradation in the lab
 - Understand the Al/Zr differences
 - Oxidation/temperature/secondary electrons/other?
 - On-orbit "cleaning" of optics
 - Materials selection
 - Best practices for design and handling

MEGS-A ANOMALY

- May 26 2014 23:36:18 page sent:
 "Some data failed limit/state checks ALARM: EVE State or Limit Violation"
- MEGS A +24V voltage red low (~ +10V)
 MEGS A +24V current red high (0.25A limited)
- MEGS-A (and SAM) were switched off
- Power cycles next day in case it was an SEU: no change
- We are almost certain this is a failed capacitor

MEGS-A ANOMALY 2

- Tried power cycling MEGS-A 100 times
 - This might 'split' the cap and clear the short
 - Did not work
- Working on other possible solutions, but outlook is not good

If ANYBODY has any suggestions please let us know

ANDREW'S THOUGHTS ON EUV BEST PRACTICES SDO-EVE STCE 2014

MATERIALS

- No silicones
- No adhesives in the optical cavity
- Lubricants: be very careful what and where
- "Bakeable" materials and coatings
- What does solar EUV degrade to generate contaminants on-orbit we don't see on the ground?

DESIGN

- DOOR!!!
 - Do not open until the worst of the S/C outgassing is over
 - We keep detectors and optics warm during this time too
- Multiple filters for degradation and inter-comparison
- Cold finger is this how SWAP is immune?
- Cap filters against oxidization
 - Is this an issue on-orbit too?
- On-orbit cleaning?
- Non-stick filters?

HANDLING AND PRODUCTION

- Bake and RGA/TQCM
 - parts/ vacuum chambers etc.
- Test and calibration time
 - Make sure optics and detectors are NEVER condensation points, in testing or flight
- Purge system to T0 (make sure purge is clean)
- Witness system (for instrument and purge)
 - Difficult optically, X-ray Photon Spectroscopy (XPS) or spectroscopic ellipsometry?

UNDERSTAND ON-ORBIT

DEGRADATION

- Where do the contaminants come from ?
 - Instrument
 - - S/C cleanliness and materials
 - Propellants
 - What are the paths to the instrument
- What are the processes
 - Photon/electron induced cracking
 - Oxidation

NON-CONTAMINANT DEGRADATION

- Radiation
 - Detectors
 - Multi-layers
 - Electronics
- Charge depletion (PMTs, MCPs...)