- - G ad - .

SunPy: New Scientific Analysis ‘
Capabilities for GOES Observations EXEes.

= * Kk k %k
) Daniel Ryan!, Stuart Mumford?, Steven Christe?, David S

T
. -l - ~ o

B i e T Ina =k - ;)
- : :)
Sy . . R "9 .
: . 4 :
\ - .
: :
a N

g SunPy Perez-Suarez*, Andrew Inglis3, Marie Dominque! ROB/STCE
gt IRoyal Observatory of Belgium, 2University of Sheffield, SNASA Goddard Space Flight Center, i
“South African National Space Agency t

Abstract * .

The SunPy project is a new open-source software library for solar physics using the Python programming A%
language and is becoming increasingly useful for scientific analysis. SunPy can now be used to derive Pt
temperature and emission measure from GOES/XRS observations. The GOES/XRS series has been o
consistently observing the Sun in soft X-rays since the 1970’s and has become the most popular instrument (2%
with which to analyse the thermal coronal plasma in solar flares. This new capability represents a significant Vo
step forward in making python and SunPy a viable alternative for all aspects of solar physics data analysis. {

Why Python? Theory 1

| e free and open source e Highly transferable skill both e Temperature and emission measure are
_ e within and beyond science. calculated using White et al. (2005), the same as
. mh_erent readab_|I|ty encourages _ | in Solar SoftWare (SSW).
easier collaboration. e Good mixture of high and low |
e level programming for easy use e The same CHIANTI-generated tables relating
g EcoSyStem of usersand oo 4 code. e.g. by calling C. temperature, emission measure are GOES flux !
support ratio are used. Results same as SSW. ‘

Deriving Temperature and EM with SunPy

There are two ways calculate GOES temperature and emission measure in SunPy. The required functions are located in the l |
: sunpy.instr.goes module. The resulting units of temperature are MK and emission measure cm=3. »
1) temp_em() function and GOESLightCurve object = ——
J >>> from sunpy.instr.goes import temp_em §1;~/’/j \\ME“NW:
- >>> 1mport sunpy.lightcurve as 1lc # Import the modules we need 5 ﬁ/
Create GOESLightCurve object 10% | ok
>>> glc = 1lc.GOESLightCurve.create(2011-06-07 06:00°, ‘2011-06-07 08:00’) 1034

Create new object with temperature and EM using the temp_em() function.
>>> glc_new = temp_em(glc)
new values 1n glc_new.data.temperature and glc_new.data.em

Temperature [MK]

<
/
) 1

-
—
o
%2 §S o) o

2) goes_chianti_tem() function and arrays of GOES fluX rigure 1. Goes flux for
| the 2011 June 7 flare ”

. .
E >
. : :

L ¢ -

>>> from sunpy.instr.goes import goes_chianti_tem. (top) and resulting e [T
Let fluxl1_8 and flux@5_4 are numpy arrays of GOES fluxes. temperature (middle) 2 “T‘M/ \~
Create numpy arrays for temperature and EM. and emission measure = g%

anti bott culated with &
>>> temp, em = goes_chianti_tem(flux1_8, flux@5_4) (Su?,lpc;_m) RS i s

i

o
i
~

06:15:006:30:0®6:45:0®7:00:0®07:15:007:30:0®7:45:00
2011-06-07

= Coming Soon: Calculate GOES
- Radiative Loss Rates and Integrated
and Cumulative Radiated Losses.

See sunpy.org to install, /
use, and contribute. hars

http://sunpy.org

