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Bayesian Data Analysis

Bayesian Renaissance in Astronomy

The use of Statistical Methods in general and
Bayesian Methods in particular is growing
exponentially in Astronomy.
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Bayesian Data Analysis

Why Use Bayesian Methods?

Advantages of likelihood-based methods:
@ Directly model complexities of sources and instruments.
@ Allows science-driven modeling. (Not just predictive modeling.)
@ Combine multiple information sources and/or data streams.
@ Allow hierarchical or multi-level structures in data/models.

@ Bayesian methods have clear mathematical foundations
and can be used to derive principled statistical methods.

@ Sophisticated computational methods available.
Challenges:

@ Require us to specify “prior distributions” on unknown
model parameters.
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Bayesian Data Analysis

Bayesian Statistical Analyses: Likelihood

@ Many methods based on x? or Gaussian assumptions.
@ Bayesian/Likelihood methods easily incorporate more

appropriate distributions.

@ E.g., for count data, we use a Poisson likelihood:

x? fitting:

Gaussian Loglikelihood:

Poisson Loglikelihood:

... or Pareto distribution for continuous data following a power law.

v =2
(Vi - A)
%;01 %; of

=Y A+ Yilog A,

bins bins
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Bayesian Data Analysis

Bayesian Statistical Analyses: Likelihood

Likelihood Functions: Distribution of data given model
parameters. Single bin detector: Y ~ Poisson(\g):

likelihood(\s) = e *sA\%/Y! loglikelihood(As) = —As + Ylog(As)

Maximum Likelihood Estimation: Suppose Y = 3

0.20

The likelihood
and its normal
approximation.

likelihood
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!

0.00

lambda

Can estimate \s and its error bars. Imperial College



Bayesian Data Analysis

Bayesian Analyses: Prior and Posterior Dist'ns

Prior Distribution: Knowledge obtained prior to current data.

Bayes Theorem and Posterior Distribution:

posterior(A\) o likelihood(\) x prior(\)
pAY) = p(Y[\)p(A)/p(Y)

Combine past and current information:
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Bayesian analyses rely on probability theory mesa college



Bayesian Data Analysis

Multi-Level Models

Example: Background contamination in a single bin detector

@ Contaminated source counts: Y = Ys+ Yg
@ Background counts: X

@ Background exposure is 24 times source exposure.
A Poisson Multi-Level Model:
LEVEL 1: Y|Yg, As ' Poisson(\g) + Ya,
LEvEL 2: Yg|Ag %' Pois(Ag) and X|Ag ' Pois(\g - 24),
LeveL 3: specify a prior distribution for Ag, As.

Each level of the model specifies a dist'n given unobserved
quantities whose dist'ns are given in lower levels.

Imperial College
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Bayesian Data Analysis

Posterior and Marginal Posterior Distributions

Summarizing the posterior distribution:
@ We can plot the contours of the posterior distribution.
@ Plot the marginal distributions of the parameters of interest:

p(rs| Y, Ye) = / p(rs, As | Y, Ye)dAs

joint posterior

prior posterior with flat prior
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Bayesian Data Analysis

Markov Chain Monte Carlo

Exploring the posterior distribution via Monte Carlo.

prior posterior joint posterior
with flat prior
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Easily generalizes to higher dimensions.
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X-ray Spectral Analysis
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X-ray Spectral Analysis

Science and Data
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The Chandra X-Ray Observatory
@ Images > 30x sharper then any previous X-ray telescope.

@ X-rays are produced by multi-millions degree matter, e.g.,
by high magnetic fields, extreme gravity, explosive forces.

Data is collected for each arriving photon:
@ Two-dimensional sky coordinates, energy, and arrival time

@ High resolution discrete variables:
e.g., 4096 x 4096 spatial and 1024 spectral bins imperil Colge

@ Four-way table of photon counts. rondon



X-ray Spectral Analysis

A Basic Spectral Models

Photon counts modeled with Poisson process:
@ The continuum indicates the temperature of the source.
© Emission and absorption lines gives clues to composition.

expeced count / bin
05 10 15 20 25 30
Il

energy
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X-ray Spectral Analysis

Multi-Level Models: X-ray Spectral Analysis'
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X-ray Spectral Analysis

Modeling Data Collection Mechanism
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@ We can separate a complex problem into a sequence of
easier-to-solve problems.
@ Model source, absorption, instrumental effects, and )
Imperial College
background separately. London



X-ray Spectral Analysis

What About Prior Distributions?

We can often use “objective prior distributions"
@ Priors can be used
e to incorporate information from outside the data, or
e to impose structure on the fitted model.?
@ Priors offer a principled compromise between “fixing” a
parameter & letting it “float free”.
© The common practice of setting min and max limits amounts to
using a flat prior over a specified range.

2Esch, Connors, Karovska, and van Dyk (2004). An image reconstruction technique with error
estimates. The Astrophysical Journal, 610 1213-1227.
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X-ray Spectral Analysis

Model Diagnostics (e.g., van Dyk and Kang, 2004)
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Bayesian methods

can incorporate specific
error characteristics of
data models:

Compare

@ Gaussian Errors

@ Posterior Predictive
Errors.

Posterior Predictive Dist'n:
p(Yep | V) =
S p(Yeep | 0) p(0| Y)dO
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X-ray Spectral Analysis

Model Diagnostics (e.g., van Dyk and Kang, 2004)
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X-ray Spectral Analysis

Posterior Predictive Checks: Is there a line?3

Model 0: no line Model 1: known location Model 2: unknown location
@ The Likelihood Ratio Test:

T(Yrep) = log SuPsce, (0] Vi) i=1,2
P SupQEeoL(eb/rep) ’ T

@ Sample Y, from posterior predictive dist'n under Model/ 0.

Model 0 vs. Model 1 Model 0 vs. Model 2
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Knowing line location increases strength of evidence.

Imperial College
London

3Pro'[assov, van Dyk, Connors, Kashyap, and Siemiginowska (2002). Statistics: Handle with care —
detecting multiple model components with the likelihood ratio test, The Astrophysical Journal, 571 545-559.
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Bayesian Computation

(Markov Chain) Monte Carlo
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@ Goal: obtain a sample from the posterior distribution of 6.
@ The sample may be independent or dependent.

@ Markov chains can be used to obtain a dependent sample.
@ Given 09, sample

00 ~ k(060 1) for t=1,2,...

Imperial College
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Bayesian Computation

The Metropolis Sampler

Draw 69 from some starting distribution.

Fort=1,2,3,...
Sample: 6* = 6=+ random noise

: oY
Compute: r = %

Set- o(h — 0* with probability min(r, 1)
16D otherwise

Note

@ Random noise must be symmetric,
e.g., Gaussian or uniform distribution centered at zero.

o If p(9*| Y) > p(e(t_1)| Y), jumpl Imperial College
London



Bayesian Computation

Complex Posterior Distributions |
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Bayesian Computation
Complex Posterior Distributions |
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Highly non-linear relationships among parameters. tondon



Bayesian Computation

Complex Posterior Distributions |l
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Bayesian Computation

Complex Posterior Distributions

02 03 04 05

posterior density
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Bayesian Computation

Complex Posterior Distributions

Imperial College
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Solar Physics

Outline

e Solar Physics
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Solar Physics

Multilevel Models

Sequentially account for physical model, errors in recorded
energy, selection effects, data contamination, truncation, etc.
Model Parameters: 6.

Physical Model: p(E|¢) is dist’'n of true flare energies.
Under-reported Energy: p(Epy|6).

Data Truncation: p(Eqync|0)

Data Contamination: p(E,s|6).

Likelihood:

P(Emil8) — / P(Exps, Evancs Evtars E10)0E e dEiar dE

= / p( Eobs | Etrunc )P( Etrunc | Eblur )P( Eblur | E)P( E) dEtrunc dEblur dE

Imperial College
London

(Omitting @ in the last line to save space!)



Solar Physics

Modeling Data Collection Mechanism

Recall:

counts per unit counts per unit

counts per unit
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Likelihood:
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Solar Physics

Power Law for the True Flares Energy

Choice of model:

@ If events are are recorded as counts in energy bins,
Poisson models are appropriate.

@ If continuous energies are recorded, they should be
modeled directly:

E

-1 =

p(Elpy={ O )<Eo
0 otherwise

-
) Ey' for E > E

where v > 1.
@ In statistics this is called the Pareto distribution.
@ Generalization: broken power-law, added features, etc.

Imperial College

London



Solar Physics

Under-Reporting of Energy

Errors in recorded event energies:
@ Under-reporting of energies:

Eowr = UE, with u <1
@ Parnell & Jupp (2000) suggest a Beta(¢ + 1, 1) distribution:

(p+Nu® for 0<u<1
0 otherwise

p(ulf) = {

with ¢ > —1. (Larger  — less under-reporting.)
@ In principle, any distribution p( Ep| E, 6) can be used.
@ p(Epiurlf) = [ p(Eowr| E, 9)P(E|7)dE. (e.g., skew-Laplace distn)

Imperial College
London



Solar Physics

Data Truncation

Selection Effects
@ Some events are not observed:

_ )1 ifeventis observed
)0 otherwise '

@ The probability of observation depend on energy:

p(Z = 1|Epiur, 8) = Pr(event is observed| Epyy)

Full Truncation: Observe if and only if Eqin < Epjur < Emax-
Stochastic Truncation: A probability of observing any event.

Imperial College
London



Solar Physics

Data Truncation

Condition on Z = 1 to re-weight p( Ep|6):
p(EbluraZ = 1|9)
p(Z =110)

P(Eow|0)p(Z = 1|Epiur, 0)
J P(Eviue|0)P(Z = 1|Epiur, 0) dEpiur

p(ELrunc‘a) = p(Eblur|9,Z = 1) =

f(Epiur) Pr(observed) f(Eqrunc)
o
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Imperial College
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Solar Physics

Data Contamination

Two types of selection effects
Truncation Events of interest are not recorded.
Contamination Events are recorded that are not of interest.

P(Eobs|0) = ap(Euunc|0) + (1 — a)p(Ebkgd)

To identify underlying power law, must know something about:
@ blurring function, p(Eu|E, 0)
@ probability events of interest are included, p(Z = 1|Epjur, 0).
@ distribution of contaminating events, p(Epga|6).

After specifying model and obtaining data, fit via MCMC.

Imperial College
London



Calibration of X-ray Detectors
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Calibration of X-ray Detectors

Calibration of X-ray Detectors

Computer Background \
Models b
L] 4

Basic Parametric 4 Photon i =
> o : > EZ{ , > serve .
Physics Models Absorption - Observed Data

Ll el I Optical Telescope.
Models Stccham{_ Censoring * Gaussian
* Blurring Measurement Errors

@ We must model both

@ the scientifically interesting source and
@ instrumental effects.

How well are the instruments understood?

Imperial College
London



Calibration of X-ray Detectors

Calibration Products

@ Analysis is highly dependent on Calibration Products:

o Effective area records sensitivity as a function of energy

e Energy redistribution matrix can vary with energy/location

e Point Spread Functions can vary with energy and location
Exposure Map shows how effective area varies in an image

@ In this talk we focus on uncertainty in the effective area.

50

ACIS-S effecive area (o)
2 w00 o

1
Eev]

A CHANDRA effective area.

100000 2000

EGERT exposure map
Sample Chandra psf's (area x time) Imperial College
(Karovska et al., ADASS X) London



Calibration of X-ray Detectors

Derivation of Calibration Products

800

o Effective area records the
instrument sensitivity as
function of energy

@ Aim to capture deterioration
of detectors over time.

@ Complex computer models of Een
subassembly components.

@ Calibration scientists provide s
a sample representing
uncertainty

@ Calibration Sample is
typically of size M ~ 1000.

(em’)
400 600

ACIS-S effective area (cm?)
200
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Imperial College
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Calibration of X-ray Detectors

Simple Emulation of Computer Model*

We use Principal Component Analysis to represent uncertainly:

m
A~ Ag+8+) gnv;,
j=1
Ap: default effective area,
d: mean deviation from Ag,
r; and v;: first m principle component eigenvalues & vectors,
g;. independent standard normal deviations.

Capture 95% of variability with m = 6 — 9.

7 Imperial College
Lee, Kashyap, van Dyk, Connors, Drake, Izem, Meng, Min, Park, et al. (2011). Accounting for Calibratig?don
Uncertainties in X-ray Analysis: Effective Areas in Spectral Fitting. The Astrophysical Journal, 731, 126-144.



Calibration of X-ray Detectors

Two Possible Target Distributions®

We consider inference under:
A PRAGMATIC BAYESIAN TARGET: mo(A,0) = p(A)p(0|A,Y).
THE FULLY BAYESIAN POSTERIOR: 7(A,0) = p(A|Y)p(0|A,Y).

Concerns:
Statistical Fully Bayesian target is “correct”.

Cultural Astronomers have concerns about letting the
current data influence calibration products.

Computational Both targets pose challenges,
but pragmatic Bayesian target is easier to sample.

Practical How different are p(A) and p(A|Y)?

With MCMC we sample a different effective area curve at each
iteration according to its conditional distribution.

Imperial College
5Xu, van Dyk, Kashyap, Siemiginowska, Connors, Drake, et al. (2014). A Fully Bayesian Method for ~ -0ndon
Jointly Fitting Instrumental Calibration and X-ray Spectral Models. The Astrophysical Journal, to appear.



Calibration of X-ray Detectors

Implementing the Fully Bayesian Analysis

Direct MH sampling is difficult. (Case-by case tuning of jumping rules.)

Pragmatic Bayesian posterior
@ We can easily sample from mp(A, 6).
@ Well suited proposal dist'n: over-dispersed relative to (A, 6).
@ But my(A, #) cannot be evaluated

p(Y10. A)p(6)
p(Y|A)
This is a doubly intractable distribution.

@ We construct a normal approximation (~ 20 dimensional).

@ Use as jumping rule in an independence MH sampler.

mo(A,0) = p(0]Y, A)p(A) = p(A)

Imperial College
London



Calibration of X-ray Detectors

Sampling From the Full Posterior

Default Effective Area Pragmatic Bayes Fully Bayes

2.04
2.04
2.04

6,
6,
6,

2.00
°
2.00
2.00

1.96

©

o 4

0.90 0.95 1.00 1.05 = 080 0.95 1.00 1.05 0.90 0.95 1.00 1.05
6; 6; 6;

Spectral Model (purple bullet = truth):

1.96

power law: mean(E;|0) = 6, Ej’e2

Pragmatic Bayes is clearly better than standard method,
but a Fully Bayesian Method is the ultimate goal.

Imperial College
London



Calibration of X-ray Detectors

How it Works on a Sample of Radio-Loud Quasars
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Calibration of X-ray Detectors

For Further Reading |
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