3D morphological reconstruction of CMEs and CME-driven shocks fromSECCHI/COR and HI1 observations and their link to in-situ measurements

Li Feng^{1,2} & Bernd Inhester¹

Max Planck Institute for Solar System Research, Germany Purple Mountain Observatory, Chinese Academy of Sciences, China

Outline

- Introduction to mask fitting method
- Comparison to other methods
- Application to the 3D shock reconstruction
- Extension from COR to HI1 observations
- In-situ observations

Mask Fitting Method: input data

Input data: 2D coordinates of the CME periphery in coronagraph images from three viewpoints: COR 1 & 2 /STEREO A, B and LASCO C2 & 3 /SOHO

In cases that three images are not taken simultaneously, linear interpolation of the CME periphery positions is used for a desired time.

Feng et al. 2012, ApJ

Mask Fitting Method: method description

Define and discretise a suncentred 3D box and project each grid point into three image planes.

project each 3D grid point

A 3D point is considered to be within a CME only when its three projections are all located within the masks marked by red points in the left images.

Mask Fitting Method: method description

Bezier curves are applied to smooth the reconstruction in each slice of CME.

The stack of all slices form a CME cloud in 3D. Further analyses: geometric centre, eigen values along three principal axes.

Comparison of the methods

Excluding the LCT+TR method, the latitude of the CME's centre of gravity derived from other methods deviates within one degree and longitude differs within 19 degrees.

CME event : started from 2012-07-12

Data coverage:

Continuous SECCHI COR and HI data Data gap from about 17:30 to 23:00 for LASCO C2 and C3

Tracing CME and CME-driven shock

COR1+COR2 A LASCOC2 COR1+COR2 B

3D reconstruction from COR+HI1 observations

Step 1: combine COR and HI1 images

Step 1: combine COR and HI1 images

Project HI1 data to the image plane of COR

Calabretta & Greisen (2002)

Step 2: trace CME and its driven shock

Step 2: trace CME and its driven shock

Traced CME peripheries from A and B

Traced shock from A and B: uncertainties exist

Step3: 3D mask fitting reconstruction

CME and shock evolution

17:24 UT

23:20UT

Comparison with other methods

In situ observations

Moestl et al. 2014, ApJ

Magnetic field data of Messenger and VEX

VEX electron and ion spectral width probably heated plasma by the shock on July 14th?

Outlook

A time sequence of the 3D reconstructions of the CME and its driven shock 1. to analyze their kinematics 2. to have a better understanding of the link between

the remote sensing and in-situ observations

Thank you very much for your attention !