The Real Time Flare Monitor System at HSOS

Lin Jiaben, Deng Yuanyong, Guo Juan, Zeng Zhen
Key Laboratory of Solar Activity, NAOC, CAS. (Email: jiaben.lin@163.com)

ABSTRACT:
Flare is one of the most concerned activities on the solar surface. A Real Time Flare Monitor System (RTFMS) had been founded and put into use at Huairou Solar Observing Station (HSOS) in 2013. In RTFMS, an adaptive threshold algorithm for real time flare detection is designed based on morphological methods and statistical results. In order to reduce the false detections caused by clouds or unintended operations, the raw data from CCD to RTFMS must go through rigorous steps. In the typical clear day, RTFMS could detect C1.X flare. Besides the routine observation mode, RTFMS has a flare mode for high cadence observation, when there is a flare, the local data covered flare could be recorded at the rate of 2f/s and the full disk image at the rate of 1 f/m.

Flare detection Algorithm:
1) Key feature of Ha flare

Conclusion:
RTFMS could detect flares in real time. By four layers logic judgments, the accuracy of the algorithm for flares above C5.0 is 100%. There are missed flares due to bad weather, data cross check with other observatories could greatly improve the ability of RTFMS. Flare mode of RTFMS could be trigger by flare onset and record data at a rate of 2f/s. Every detected flare has a record in the obs log.

Acknowledgements:
This project is supported by NSF 10903015 and Young Researcher Grant of NAOC, CAS.

References:

Results:
1) From 12 May ~ 19 Nov 2013, in the observable periods of HSOS, RTFMS detected 34 flares (All GOES Xray above C5.0 Flares) and sent 241 alert Emails.
2) Recognition Algorithm realized in real time(2 f/s). The alert Email will be sent every five minutes according to the Flare status. The alert Email could arrive the forecaster in 20 seconds after the onset of the flare.

What’s Next:
1) Higher frame rate CCD;
2) Bilinear CCD.
3) Sun spots and filaments monitor will be combined in future.
4) Joint observation with other telescopes.

Comments, Suggestions or Collaborations are welcome! Email: jiaben.lin@163.com