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Introduction
Sunspot numbers form a long-duration proxy of solar activity,
with records starting in the early seventeenth century. Other
proxies of solar activity that have become available more re-
cently show similar patterns and correlations as the sunspot
numbers. We extend the Yu et al. [1] Bayesian multilevel
model of the solar cycle to incorporate data from proxies that
have become available more recently, while also taking advan-
tage of the long history of observation of sunspot numbers.
Comparing fits of the model using multiple proxies and the
sunspot numbers alone reveals significant differences in the in-
ferred cycle properties between the two model fits.

Solar Activity Proxies
We consider three highly correlated proxies of solar activity:
sunspot numbers (SSNs), sunspot areas, and the 10.7cm flux.
A plot of these data is presented in Figure 1. The roughly 11-
year cycle of SSNs follows the overall solar cycle. We observe
similar patterns in the sunspot areas and the 10.7cm flux, but
we also notice differences in the cycle properties implied by the
three proxies (e.g., sunspot areas appear to have shorter cycle
lengths and less pronounced peaks).
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Figure 1 : The observed proxies (monthly averages).

Modeling the Solar Cycle with SSNs

Level One: Modeling the Cycles

Yu et al. [1] parameterize the ith solar cycle with a set of
cycle-specific parameters: start time t(i)

0 , time of cycle maxi-
mum t(i)

max, end time t(i)
1 , and amplitude c(i). The parameterized

solar cycle is presented in Figure 2, where U [t] denotes the “av-
erage solar activity level” at time t (in months).
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Figure 2 : Parameterized form of a solar cycle.

Level Two: Relationships Between

Consecutive Cycles

The evolution of the solar cycle is modeled via a Markov struc-
ture on the cycle-specific parameters, see Figure 3. The Markov
structure incorporates known features of the solar cycle, such as
the Waldmeier effect, and allows for straightforward prediction
of ongoing and future cycles.

Figure 3 : Markov structure relating the parameters of cycle i
to the parameters of cycle i − 1.

Incorporating Multiple Proxies
A difficulty with combining multiple proxies to model the so-
lar cycle is the varying temporal coverages of the proxies. The
SSNs are available as monthly estimates extending back to Jan-
uary 1749, while monthly estimates of sunspot areas and the
10.7cm flux only extend back to May 1874 and February 1947,
respectively. There are generally no gaps in the data for an in-
dividual proxy once estimates become available, which results
in the monotone missing data pattern illustrated in Figure 4.
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Figure 4 : The monotone missing data pattern. Red bars indi-
cate the time range during which a proxy is missing and green
bars indicate the time range during which a proxy is recorded.

Complete-Data Analysis

The proxies exhibit strong linear correlations, see the top row
of Figure 5. With no missing data, it is appropriate to use
principal component analysis (PCA) to project the multivari-
ate time-series data, Y , onto the one-dimensional manifold
defined by the direction of maximum variance. Prior to PCA
we use transformations to reduce heteroscedasticity and im-
prove linearity, see the middle row of Figure 5. The univariate
time-series data, G(Y ), that is then produced via PCA pro-
jection represents the overall solar activity level and is highly
correlated with the transformed proxy data, see the bottom row
of Figure 5. G(Y ) is treated as observed data and modeled
with the Bayesian multilevel model of the solar cycle that was
constructed using the SSNs.
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Figure 5 : Scatterplots of observed proxies (Y , top row), trans-
formed proxies (Ỹ , middle row), and Ỹ versus G(Y ) (bottom
row). The transformations are ỹj =

�����y[t]
j + 10 for j = 1, 2, and

ỹ3 =
������y[t]

3 − min
t

(y[t]
3 ).

Missing Data

Multiple imputation (MI) [e.g., 2] provides a principled way to
use the univariate model to infer the solar cycle using multiple
proxies. We specify a local missing data model, where ỹ1 are
the SSNs, ỹ2 are the sunspot areas, and ỹ3 is the 10.7cm flux:

ỹ[t]
2 | (ỹ[t]

1 , ỹ[t+1]
2 ) ∼ N(φ01 + φ11ỹ

[t]
1 + φ21ỹ

[t+1]
2 , ζ1) (1)

ỹ[t]
3 | (ỹ[t]

1 , ỹ[t]
2 , ỹ[t+1]

3 ) ∼ N(φ02 + φ12ỹ
[t]
1

+ φ22ỹ
[t]
2 + φ32ỹ

[t+1]
3 , ζ2). (2)

We fit (1) using only the observations for which both ỹ1 and
ỹ2 are observed, and likewise for (2). Missing values can then
be imputed by drawing from the fitted missing data model.

Results

To allow for comparison we fit the solar cycle model with mul-
tiple proxies (multiple-proxy model) and with the SSNs alone
(SSN model). With multiple proxies, inference is performed by
following the MI combining rules [2] with 5 imputations. The
fitted solar cycle for both model fits is displayed in Figure 6. In
general, the estimates of t(i)

max under the multiple-proxy model
are later than those under the SSN model, although some 95%
intervals overlap. We also find that the multiple-proxy model
has significantly shorter falling times and total cycle lengths
than the SSN model. Prior to the current cycle there is an
extended minimum in the fitted solar cycle under the multiple-
proxy model, a feature which is absent from the SSN model.
Additional results and discussion are available in [3].
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Figure 6 : The fitted solar cycle. Top: multi-proxy fit. Bot-
tom: SSN fit. The solid (dashed) curves are the fitted solar
activity level (95% intervals). The solid (dashed) vertical lines
are fitted values for t(i)

max (95% intervals).

Discussion

Our multiple-proxy model of the solar cycle provides the flex-
ibility needed to dynamically describe the complex structure
of cycles and their varying shapes, duration, and amplitudes,
while capturing the predictable way in which these features
evolve over time. Future work will focus on incorporating
hemispheric data to capture additional cycle features, such as
multiple peaks. As a preliminary step we consider only a sin-
gle proxy, sunspot areas, since they have the longest history
of hemispheric observations. Separate fits of the model using
sunspot area data from only the Sun’s southern hemisphere
(red) and northern hemisphere (blue) are displayed in the top
row of Figure 7, and exhibit offsets in several cycle maxima.
Using hemispheric sunspot areas results in a smoother overall
fit when compared to using only the full-sun sunspot areas, see
the middle and bottom row of Figure 7, respectively. Additional
proxies, such as solar polar field observations, may further re-
veal multiple cycle peaks.
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Figure 7 : Top row: Hemispheric data and model fits. Middle
row: Full sun data with (combined) hemispheric model fits.
Bottom row: Full sun data and model fit.
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